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tThe LDA te
hnique is widely used in the study of turbulent �ow �elds. The two mostimportant statisti
al fun
tions with information about the �uid dynami
s are the auto
orre-lation fun
tion (ACF) and the power spe
tral density (PSD). The te
hniques for 
al
ulatingthe ACF or the PSD of an LDA data set are sophisti
ated. Nevertheless, the 
omputationbe
omes di�
ult for a dominating low-frequen
y periodi
ity while the interesting frequen
yrange lies mu
h higher. This report 
ompares �lter te
hniques statisti
ally, derives 
orre
-tion algorithms for systemati
 deviations and investigates their usefulness. In the end are
ommendation is given how to handle this kind of data set to avoid systemati
 errors witha minimum of estimation's variability.1 Introdu
tionThe LDA te
hnique is widely used in the study of turbulent �ow �elds. Two important statisti
alfun
tions with information about the �uid dynami
s are the auto
orrelation fun
tion (ACF) andthe power spe
tral density (PSD). The te
hniques for 
al
ulating the ACF or the PSD of anLDA data set are sophisti
ated [2, 4℄. The ACF and the PSD 
orrespond through the Fouriertransform, hen
e they 
ontain the same information. Therefore, estimators for ACF or PSD 
anbe 
ompared by transforming one of these into the other. It is nearly the same whi
h domain isused for the 
omparison. Even the statisti
s (mean and varian
e) are 
omparable in time domainas well as in frequen
y domain through the linearity of the Fourier transform. Nevertheless, the
omputation be
omes di�
ult for a dominating low-frequen
y periodi
ity, while the interestingfrequen
y range lies mu
h higher, i.e. the investigation of mi
ro-turbulen
e within 
y
li
 �ow�elds.In [8℄ a �ltering te
hnique is used to redu
e the estimation's variability. But it 
an beused to isolate the interesting high-frequen
y part of the spe
trum 
ontaining the informationabout mi
ro-s
ale turbulen
e as well. Unfortunately, the results in [8℄ have a 
onstant value forfrequen
ies below a 
hara
teristi
 
ut-o� frequen
y depending on the �lter size. The des
riptionof the used �lter suggests that the PSD should disappear for lower frequen
ies. That e�e
t wasnot explained 
ontentedly.Furthermore, the ACF/PSD of the �ltered data are 
hanged through the �lter in a 
hara
-teristi
 way. That leads to a systemati
 error in the ACF/PSD estimation. It 
an be seen in[8℄ very 
learly for the strong high pass �lter with (n=1). Therefore, the authors judged this�lter to be not suitable. But this in�uen
e does not appear for �lters with higher order, only the
hara
teristi
 
ut-o� frequen
y is shifted and the errors be
ome a

eptable for a given frequen
yrange.The spe
i�
 
hara
teristi
 of the pre-�lter te
hnique is 
ompletely di�erent to that of the�parti
le rate �lter� for LDA data re
onstru
tion, i.e. for the sample-and-hold re
onstru
tion[1℄. Therefore, the results of the pre-�ltering te
hnique are more realisti
, espe
ially for highfrequen
ies. Nevertheless, an estimation of the systemati
 deviations would be usefull to judgethe reliability of the results and to design a 
orre
tion �lter similar to the pro
edure given in [7℄.1



Be
ause of the non-regularly sampling the �ltering of LDA data is non-linear. Therefore,a des
ription of the system using an impulse response is not suitable. That ex
lude all known�ltering te
hniques for equidistant sampled data sets, like 
onvolution of 
orrelation fun
tions orspe
tral ampli�
ation. A possible des
ription of non-linear systems, the estimation of statisti
alfun
tions and their re�nement is given in [7℄ where this te
hnique was applied to the sample-and-hold re
onstru
tion su

essfully.2 Filtering Te
hniques2.1 Symmetri
 Filter2.1.1 Constant Number of SamplesThe �rst �lter is similar to that in [8℄. The original LDA data samples xi = x(ti) at sampletimes ti are averaged to a lo
al mean �i�i = 12M + 1 MXj=�M xi+j (1)with a �xed number of samples M , on either side. The sample yHPi = y(ti) of the high pass(HP) �ltered series is found by yHPi = xi � �i (2)leading to an LDA data series with the same sampling s
heme like the original data set. Fur-thermore, the lo
al mean is used as the 
orresponding low pass (LP) signal.yLPi = �i (3)The Fuzzy Slotting Te
hnique (FST) [6℄Rk = PNi=1PNj=1 fk(tj � ti)yiyjPNi=1PNj=1 fk(tj � ti) (4)fk(�) = � 1� �� ��� � k�� for �� ��� � k�� < 10 otherwise (5)with the total number of samples N is used to estimate the ACF of the data set. The Lo
alNormalization (LN) [9, 5℄ and the Merged Te
hnique [4℄ are not used be
ause of the the moredi�
ult derivation of the �lter 
hara
teristi
. Figure 6 shows the �lter e�e
t on the PSD for asimulated data set.2.1.2 Constant TimeThe se
ond �lter uses all original samples within an 
onstant time window [ti �B; ti + B℄ witha given maximum delay B, symmetri
 to the time ti of the sample xi. The lo
al mean is giventhrough �i = PNj=1 b(tj � ti)xjPNj=1 b(tj � ti) (6)with the top head window fun
tionb(�t) = � 1 for j�tj � B0 otherwise (7)2
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heme a) symmetri
 �lter; b) asymmetri
 �lter using the 
ross 
orrelationand the total number of samplesN in the data set. Therefore, the expressionPNj=1 b(tj�ti) givesthe number of samples within the interval. The relative 
ompli
ated mathemati
al des
riptionof this �lter does not re�e
t the possibility of an algorithmi
 implementation 
orre
tly. Usingthe slot 
orrelation a time limited data bu�er already exists. Therefore, all routines of the slot
orrelation 
an be used for the �ltering as well. The �ltered samples yHPi and yLPi are de�nedsimilar to the �lter using a 
onstant number of samples (se
tion 2.1.1). Figure 8 shows the �ltere�e
t on the PSD for a simulated data set.2.2 Asymmetri
 FilterThe mathemati
al des
ription of the �lter 
hara
teristi
s and the derivation of the expe
ted ACFof the �ltered data set (se
tion 3) be
omes mu
h more easy for asymmetri
al �ltering. In oppositto the symmetri
 �lters, the asymmetri
 �lters use only samples before or after the pro
esseddata sample for the 
al
ulation of the lo
al mean (�gure 1b). For a 
onstant number of samplesthe lo
al mean be
omes �Fi = 1M + 1 MXj=0 xi+j (8)�Bi = 1M + 1 0Xj=�M xi+j (9)with the indi
es F refering to the foreward �lter and B refering to the ba
kward �lter. Note,that the ba
kward �lter is 
ausal (ex
epting j = 0) and the foreward �lter is non-
ausal. For a
onstant time window the lo
al mean be
omes�Fi = PN�1j=i b(tj � ti)xjPN�1j=i b(tj � ti) (10)�Bi = Pij=0 b(tj � ti)xjPij=0 b(tj � ti) (11)respe
tively. The �ltered samples yHPi and yLPi are de�ned similar to the �lter using thesymmetri
 �lter (se
tion 2.1).To obtain a relatively easy des
ription of the �lter 
hara
teristi
s, the overlapping of �lterintervals during the 
onvolution should be prevent (�gure 1a). Therefore, instead of the ACF,the 
ross 
orrelation fun
tion (CCF) of the foreward and the ba
kward �ltered data is used.3



Only time lags of the CCF with non-overlapping �lter intervals are taken as the ACF estimation(�gure 1b).There are four advantages of the asymmetri
 �lters:1. a relatively simple mathemati
al des
ription of the �lter 
hara
teristi
s,2. the �lter 
hara
teristi
s fun
tion be
omes linear (for the ACF, not for the time fun
tion),3. a non-disappearing low-frequen
y PSD in the high pass path,4. there are no modi�
ations ne
essary for the LN.The �rst two points lead to a redu
ed number of 
al
ulations. That makes an easy implemen-tation of the algorithm in real appli
ations possible. The third point looks like a disadvantagein the �rst view, but if the power in the low frequen
y range is not suppressed 
ompletely the
orre
tion 
oe�
ients in the inverted �lter matrix (see se
tion 4) be
ome not as heavy as forthe symmetri
 �lter and the 
orre
ted estimation be
omes more reliable (espe
ially the ACFestimation). With the fourth point the Merged Te
hnique, 
ombining the FST and the LNRk = q�̂2yF �̂2yBPNi=1PNj=1 fk(tj � ti)yBiyFjr�PNi=1PNj=1 fk(tj � ti)y2Bi��PNi=1PNj=1 fk(tj � ti)y2Fj� (12)fk(�) = � 1� �� ��� � k�� for �� ��� � k�� < 10 otherwise (13)�̂2yF = 1N � 1 NXi=1 (yFi � �yF)2 (14)�̂2yB = 1N � 1 NXi=1 (yBi � �yB)2 (15)�yF = 1N NXi=1 yFi (16)�yB = 1N NXi=1 yBi (17)
an be used to 
al
ulate the CCF/ACF. Figures 9 and 10 show the �lter e�e
t on the PSD fora simulated data set using an asymmetri
 �lter with a 
onstant number of samples and with a
onstant time window respe
tively.3 Filter Chara
teristi
s3.1 Symmetri
 Filter3.1.1 Constant Number of SamplesThe �lter 
hara
teristi
 
an be des
ribed through the expe
tation of the ACF R0 using the�ltered data in terms of the original ACF R (see [7℄). The derivations are similar for the highpass and the low pass. Only two di�erent 
oe�
ients are ne
essary:vs = 1 and vo = 1 for the low passvs = 2M and vo = �1 for the high pass4



The �ltered samples areyi = 12M + 1 24vsxi + vo0� �1Xj=�M xi+j + MXj=1 xi+j1A35 (18)To derive the expe
tation of R0k for a given time lag � = k�� with the temporal resolution ��the �ltered samples at two di�erent points in time �1 = k1�� and �2 = k2�� (see �gure 1a) areof interest. yk1 = 12M + 1 24vsxk1 + vo0� �1Xj=�M xk1+j + MXj=1 xk1+j1A35 (19)yk2 = 12M + 1 24vsxk2 + vo0� �1Xj=�M xk2+j + MXj=1 xk2+j1A35 (20)For the expe
tation of the ACF followsEfR0kg = Efyk1yk2g (21)Before the derivation of this expression a look at the probabilities of the di�erent samples isne
essary:1. The produ
t of the �ltered samples yk1 and yk2 in�uen
es the result of the �nal ACFestimation only under the 
ondition that the samples at the two time lags �1 and �2 arepresent. Therefore, the probability of presen
e is 1 for these samples.2. The presen
e of the other samples at given times have a probability density ps(t) = _ndepending on the data rate _n. Note, that the integral of this probability density is notequal to 1 be
ause several samples 
an o

ur within a time interval. The samples areindependent and non-numerated, they 
an be ex
hanged without an in�uen
e to the results(be
omes important later).Therefore, the produ
ts of every two samples have di�erent joint probabilities:1. The produ
t xk1xk2 of the both samples at the time lags �1 and �2 have the joint probability1.(a) Presuming that xk1 is not a member of the sample group that builds the lo
al meanat �2 and vi
e versa the sum of yk1 
ontains only xk1 and yk2 
ontains only xk2 ofsample type 1. The produ
t yk1yk2 
ontains only v2sxk1xk2 of produ
t type 1.(b) If xk1 is a member of this lo
al group for �2 and vi
e versa then both sums 
ontainboth samples. The produ
t yk1yk2 
ontain (vsxk1 + voxk2)(voxk1 + vsxk2 ) = (v2s +v2o)xk1xk2 + vsvo(x2k1 + x2k2).2. The produ
ts xk1xj with j 6= k1 and xk2xj with j 6= k2 of one sample at �1 or �2 andanother sample at the time t (t 62 [�1; �2℄) have the joint probability _n.(a) Presuming that xj is a member of the lo
al group at �1 and not a member of thelo
al group at �2 and xk1 is not a member of the lo
al group at �2 and vi
e versa thesum of yk1 
ontains only xj and yk2 
ontains only xk2 of sample types building theprodu
t type 2. The produ
t yk1yk2 
ontains only vsvoxjxk2 of produ
t type 2.(b) Presuming that xj is a member of the lo
al group at �2 and not a member of thelo
al group at �1 and xk1 is not a member of the lo
al group at �2 and vi
e versa thesum of yk1 
ontains only xk1 and yk2 
ontains only xj of sample types building theprodu
t type 2. The produ
t yk1yk2 
ontains only vsvoxjxk1 of produ
t type 2.5



(
) Presuming that xj is a member of the lo
al group at �1 and a member of the lo
algroup at �2 and xk1 is not a member of the lo
al group at �2 and vi
e versa the sumof yk1 
ontains xk1 and xj and yk2 
ontains xk2 and xj of sample types building theprodu
t type 2. The produ
t yk1yk2 
ontains only vsvoxj(xk1 +xk2)+v2ox2j of produ
ttype 2. The self produ
t of xj is also of type 2, be
ause if the sample exists also theprodu
t exists.(d) Presuming that xj is a member of the lo
al group at �1 and not a member of the lo
algroup at �2 and xk1 is a member of the lo
al group at �2 and vi
e versa the sum of yk1
ontains only xj and yk2 
ontains xk1 and xk2 of sample types building the produ
ttype 2. The produ
t yk1yk2 
ontains voxj(voxk1 + vsxk2) of produ
t type 2.(e) Presuming that xj is a member of the lo
al group at �2 and not a member of the lo
algroup at �1 and xk1 is a member of the lo
al group at �2 and vi
e versa the sum of yk1
ontains xk1 and xk2 and yk2 
ontains only xj of sample types building the produ
ttype 2. The produ
t yk1yk2 
ontains voxj(vsxk1 + voxk2) of produ
t type 2.(f) Presuming that xj is a member of the lo
al group at �1 and a member of the lo
algroup at �2 and xk1 is a member of the lo
al group at �2 and vi
e versa the sums ofyk1 and yk2 
ontains xk1 , xk2 and xj of sample types building the produ
t type 2.The produ
t yk1yk2 
ontains voxj(vs + vo)(xk1 + xk2) + v2ox2j of produ
t type 2.3. The produ
ts xixj with i; j 62 [k1; k2℄ of two samples at ti and tj (ti; tj 62 [�1; �2℄) havethe joint probability _n2. Be
ause the samples are independent, it 
an be presumed thatti < tj . With �1 < �2 the following four sub
ases are left.(a) If xi is a member of the lo
al group at �1 and not a member of the lo
al group at �2and xj is a member of the lo
al group at �2 and not a member of the lo
al group at �1then the sum of yk1 
ontains only xi and the sum of yk2 
ontains only xj of samplesbuilding a produ
t of type 3. The produ
t yk1yk2 
ontains only v2oxixj of type 3.(b) If xi is a member of the lo
al group at �1 and not a member of the lo
al group at �2and xj is a member of the lo
al group at �2 and a member of the lo
al group at �1then the sum of yk1 
ontains xi and xj and the sum of yk2 
ontains only xj of samplesbuilding a produ
t of type 3. The produ
t yk1yk2 
ontains only v2oxixj of type 3.(
) If xi is a member of the lo
al group at �1 and a member of the lo
al group at �2 andxj is a member of the lo
al group at �2 and not a member of the lo
al group at �1then the sum of yk1 
ontains only xi and the sum of yk2 
ontains xi and xj of samplesbuilding a produ
t of type 3. The produ
t yk1yk2 
ontains only v2oxixj of type 3.(d) If xi and xj are members of both lo
al groups at �1 and �2 then the sum of yk1 andyk2 
ontain xi and xj of samples building a produ
t of type 3. The produ
t yk1yk2
ontains 2v2oxixj of type 3.Now equation (21) 
an be solved. It followsEfR0kg = Efyk1yk2g = Efy(�1)y(�2)g= 1(2M + 1)2 �p1aEfv2sx(�1)x(�2)g+ p1bEf(vsx(�1) + vox(�2))(vox(�1) + vsx(�2))g+ 1Z�1 ps(t) [p2a(t)Efvsvox(t)x(�2)g+ p2b(t)Efvsvox(t)x(�1)g+ p2
(t)Efvsvox(t)(x(�1) + x(�2)) + v2ox2(t)g+ p2d(t)Efvox(t)(vox(�1) + vsx(�2))g+ p2e(t)Efvox(t)(vsx(�1) + vox(�2))g+ p2f(t)Efvox(t)(vs + vo)(x(�1) + x(�2)) + v2ox2(t)g� dt6



�1 �26 6mFigure 2: Time and sample 
ase for produ
t type 1+ 1Z�1 1Zt1 ps(t1)ps(t2)(p3a(t1; t2) + p3b(t1; t2) + p3
(t1; t2)+2p3d(t1; t2))Efv2ox(t1)x(t2)g dt2dt1	 (22)= 1(2M + 1)2 �p1av2sR(�) + p1b((v2s + v2o)R(�) + 2vsvoR(0))+ 1Z�1 ps(t) [p2a(t)vsvoR(� � t) + p2b(t)vsvoR(�t) + p2
(t)(vsvo(R(�t)+R(� � t)) + v2oR(0)) + p2d(t)(v2oR(�t) + vsvoR(� � t)) + p2e(t)(vsvoR(�t)+v2oR(� � t)) + p2f(t)(vo(vs + vo)(R(�t) +R(� � t)) + v2oR(0))� dt+ 1Z�1 1Zt1 ps(t1)ps(t2)(p3a(t1; t2) + p3b(t1; t2) + p3
(t1; t2)+2p3d(t1; t2))v2oR(t2 � t1) dt2dt1	 (23)with the probability density ps(t) of the existen
e of a sample at the time t and the probabilitypxy of the 
ases des
ribed above. The integration way of the se
ond integral in the doubleintegral is a result of the independent (non-numbered) samples in the data set. Note, that pxydepends on the order of �1, �2, t or t1 and t2 respe
tively and on the number of samples betweenthese points in time.For the produ
t types (1, 2 and 3) there are di�erent 
ases for the membership of �1, �2 andt or t1 and t2 respe
tively to the lo
al groups at �1 and �2.1. produ
t type 1: There are m samples between �1 and �2 (�gure 2). The sample at �1 isa member of the lo
al group at �2 and vi
a versa if m < M . This 
an be written like amatrix O = � vs vovp(m < M)vovp(m <M) vs � (24)with the binary fun
tion vp(x) = � 1 if x is true0 otherwise (25)giving the 
ontribution of xk1 (�rst 
olumn) and xk2 (se
ond 
olumn) to the lo
al groupof �1 (�rst raw) and �2 (se
ond raw). The produ
ts O11O21, O11O22, O12O21 and O12O22are of type 1.2. produ
t type 2:(a) The sample time t lies before �1. There are m1 samples between t and �1 and m2samples between �1 and �2 (�gure 3a). The sample at t is a member of the lo
algroup at �1 if m1 < M . The sample at t is a member of the lo
al group at �2if m1 + m2 < M � 1. Note, that the sample at �1 is also a member in this 
ase.Therefore, the number of independent samples between t and �2 must be less than7



6 6m1 m1m2 m2t t�1 �1�2 �2b) 
)6 66 66m1t �1 �2a) 6 6m2 Figure 3: Time and sample 
ase for produ
t type 2M � 1. The sample at �1 is a member of the lo
al group at �2 and vi
a versa ifm2 < M . This 
an be written like a matrixPA = � vs vovp(m2 < M) vovp(m1 < M)vovp(m2 < M) vs vovp(m1 +m2 < M � 1) � (26)giving the 
ontribution of xk1 (�rst 
olumn), xk2 (se
ond 
olumn) and xj (third
olumn) to the lo
al group of �1 (�rst raw) and �2 (se
ond raw). The produ
tsP11P23, P12P23, P13P21, P13P22 and P13P23 are of type 2.(b) The sample time t lies between �1 and �2. There are m1 samples between �1 and tand m2 samples between t and �2 (�gure 3b). The sample at t is a member of thelo
al group at �1 if m1 < M . The sample at t is a member of the lo
al group at �2if m2 < M . The sample at �1 is a member of the lo
al group at �2 and vi
a versa ifm1+m2 < M � 1. Note, that the sample at t is also a member of both groups in this
ase. Therefore, the number of independent samples between �1 and �2 must be lessthan M � 1. This 
an be written like a matrixPB = � vs vovp(m1 +m2 < M � 1) vovp(m1 < M)vovp(m1 +m2 < M � 1) vs vovp(m2 < M) �(27)(
) The sample time t lies after �2. There are m1 samples between �1 and �2 and m2samples between �2 and t (�gure 3
). The sample at t is a member of the lo
al group at�2 ifm2 < M . The sample at t is a member of the lo
al group at �1 ifm1+m2 < M�1.Note, that the sample at �2 is also a member in this 
ase. Therefore, the number ofindependent samples between �1 and t must be less than M � 1. The sample at �1 isa member of the lo
al group at �2 and vi
a versa if m1 < M . This 
an be written likea matrixPC = � vs vovp(m1 < M) vovp(m1 +m2 < M � 1)vovp(m1 < M) vs vovp(m2 < M) � (28)3. produ
t type 3:(a) The sample times t1 and t2 lie before �1. There are m1 samples between t1 and t2,m2 samples between t2 and �1 and m3 samples between �1 and �2 (�gure 4a). Thesample at t1 is a member of the lo
al group at �1 if m1 +m2 < M � 1. The sampleat t2 is a member of the lo
al group at �1 if m2 < M . The sample at t1 is a memberof the lo
al group at �2 if m1 +m2 +m3 < M � 2. The sample at t2 is a member ofthe lo
al group at �2 if m2 +m3 < M � 1. The sample at �1 is a member of the lo
algroup at �2 and vi
a versa if m3 < M . This 
an be written like a matrixQA = � vovp(m1 +m2 < M � 1) vovp(m2 < M)vovp(m1 +m2 +m3 < M � 2) vovp(m2 +m3 < M � 1) � (29)giving the 
ontribution of x(t1) (�rst 
olumn) and x(t2) (se
ond 
olumn) to the lo
algroup of �1 (�rst raw) and �2 (se
ond raw). The samples at �1 and �2 do not have a
ontribution of produ
t type 3. Only the produ
ts Q11Q22 and Q12Q21 are of type 3.8



(b) The sample time t1 lies before �1 and t2 lies between �1 and �2. There are m1 samplesbetween t1 and �1, m2 samples between �1 and t2 and m3 samples between t2 and�2 (�gure 4b). The sample at t1 is a member of the lo
al group at �1 if m1 < M .The sample at t2 is a member of the lo
al group at �1 if m2 < M . The sample at t1is a member of the lo
al group at �2 if m1 +m2 +m3 < M � 2. The sample at t2is a member of the lo
al group at �2 if m3 < M . The sample at �1 is a member ofthe lo
al group at �2 and vi
a versa if m2 +m3 < M � 1. This 
an be written like amatrix QB = � vovp(m1 < M) vovp(m2 < M)vovp(m1 +m2 +m3 < M � 2) vovp(m3 < M) � (30)(
) The sample time t1 lies before �1 and t2 lies after �2. There arem1 samples between t1and �1, m2 samples between �1 and �2 and m3 samples between �2 and t2 (�gure 4
).The sample at t1 is a member of the lo
al group at �1 if m1 < M . The sample att2 is a member of the lo
al group at �1 if m2 +m3 < M � 1. The sample at t1 is amember of the lo
al group at �2 if m1 +m2 < M � 1. The sample at t2 is a memberof the lo
al group at �2 if m3 < M . The sample at �1 is a member of the lo
al groupat �2 and vi
a versa if m2 < M . This 
an be written like a matrixQC = � vovp(m1 < M) vovp(m2 +m3 < M � 1)vovp(m1 +m2 < M � 1) vovp(m3 < M) � (31)(d) The sample times t1 and t2 lie between �1 and �2. There are m1 samples between �1and t1, m2 samples between t1 and t2 and m3 samples between t2 and �2 (�gure 4d).The sample at t1 is a member of the lo
al group at �1 if m1 < M . The sample att2 is a member of the lo
al group at �1 if m1 +m2 < M � 1. The sample at t1 is amember of the lo
al group at �2 if m2 +m3 < M � 1. The sample at t2 is a memberof the lo
al group at �2 if m3 < M . The sample at �1 is a member of the lo
al groupat �2 and vi
a versa if m1 +m2 +m3 < M � 2. This 
an be written like a matrixQD = � vovp(m1 < M) vovp(m1 +m2 < M � 1)vovp(m2 +m3 < M � 1) vovp(m3 < M) � (32)(e) The sample time t1 lies between �1 and �2 and t2 lies after �2. There are m1 samplesbetween �1 and t1, m2 samples between t1 and �2 and m3 samples between �2 and t2(�gure 4e). The sample at t1 is a member of the lo
al group at �1 if m1 < M . Thesample at t2 is a member of the lo
al group at �1 if m1 +m2 +m3 < M � 2. Thesample at t1 is a member of the lo
al group at �2 if m2 < M . The sample at t2 is amember of the lo
al group at �2 if m3 < M . The sample at �1 is a member of thelo
al group at �2 and vi
a versa if m1 + m2 < M � 1. This 
an be written like amatrix QE = � vovp(m1 < M) vovp(m1 +m2 +m3 < M � 2)vovp(m2 < M) vovp(m3 < M) � (33)(f) The sample times t1 and t2 lie after �2. There are m1 samples between �1 and �2, m2samples between �2 and t1 and m3 samples between t1 and t2 (�gure 4f). The sampleat t1 is a member of the lo
al group at �1 if m1 +m2 < M � 1. The sample at t2 isa member of the lo
al group at �1 if m1 +m2 +m3 < M � 2. The sample at t1 isa member of the lo
al group at �2 if m2 < M . The sample at t2 is a member of thelo
al group at �2 if m2 +m3 < M � 1. The sample at �1 is a member of the lo
algroup at �2 and vi
a versa if m1 < M . This 
an be written like a matrixQF = � vovp(m1 +m2 < M � 1) vovp(m1 +m2 +m3 < M � 2)vovp(m2 < M) vovp(m2 +m3 < M � 1) � (34)9
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ase for produ
t type 3To make the joint probabilities of the several time order and produ
t 
ases not too 
ompli-
ated, a summation of possible numbers of m, m1, m2 and m3 for ea
h time order 
ase is done.The produ
ts are divided into the three types. The des
ribed produ
t subtypes are representedby pre-fa
tors depending on the number of independent samples m, m1, m2 and m3 between thetimes �1, �2, t1 and t2. They are given through the matri
es P above. Therefore, equation (23)be
omesEfR0kg = 1(2M + 1)2 1Xm=0 pm(m; �) [(O11O22 +O12O21)R(�) + (O11O21 +O12O22)R(0)℄+ _n(2M + 1)2 0Z�1 ( 1Xm1=0 1Xm2=0 pm(m1;�t)pm(m2; �) [(PA11PA23+PA13PA21)R(�t) + (PA12PA23 + PA13PA22)R(� � t) + PA13PA23R(0)℄g dt+ _n(2M + 1)2 �Z0 ( 1Xm1=0 1Xm2=0 pm(m1; t)pm(m2; � � t) [(PB11PB23+PB13PB21)R(t) + (PB12PB23 + PB13PB22)R(� � t) + PB13PB23R(0)℄g dt+ _n(2M + 1)2 1Z� ( 1Xm1=0 1Xm2=0 pm(m1; �)pm(m2; t� �) [(PC11PC23+PC13PC21)R(t) + (PC12PC23 + PC13PC22)R(t� �) + PC13PC23R(0)℄g dt+ _n2(2M + 1)2 0Z�1 0Zt1 ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1; t2 � t1)pm(m2;�t2)pm(m3; �)[(QA11QA22 +QA12QA21)R(t2 � t1)℄g dt2 dt1+ _n2(2M + 1)2 0Z�1 �Z0 ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1;�t1)pm(m2; t2)pm(m3; � � t2)[(QB11QB22 +QB12QB21)R(t2 � t1)℄g dt2 dt1+ _n2(2M + 1)2 0Z�1 1Z� ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1;�t1)pm(m2; �)pm(m3; t2 � �)[(QC11QC22 +QC12QC21)R(t2 � t1)℄g dt2 dt1+ _n2(2M + 1)2 �Z0 �Zt1 ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1; t1)pm(m2; t2 � t1)pm(m3; � � t2)[(QD11QD22 +QD12QD21)R(t2 � t1)℄g dt2 dt110



+ _n2(2M + 1)2 �Z0 1Z� ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1; t1)pm(m2; � � t1)pm(m3; t2 � �)[(QE11QE22 +QE12QE21)R(t2 � t1)℄g dt2 dt1+ _n2(2M + 1)2 1Z� 1Zt1 ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1; �)pm(m2; t1 � �)pm(m3; t2 � t1)[(QF11QF22 +QF12QF21)R(t2 � t1)℄g dt2 dt1 (35)with the probability pm(m;�t) = ( _n�t)mm! e� _n�t (36)of m independent samples within the time interval �t. Be
ause of the 
ertainty that no relationexists over an interval with at least M samples, the summations 
an be redu
ed by using theprobability p0m(m;�t) = � pm(m;�t) for m <M1�PM�1i=0 pm(i;�t) for m =M (37)instead and building the sum over 0 to M . The integrals in equation (35) are 
al
ulated nu-meri
ally with the time resolution �� of the ACF through a substitution by sums. Therefore,equation (35) be
omesEfR0kg = 1(2M + 1)2 MXm=0 p0m(m; k��) [(O11O22 +O12O21)Rk + (O11O21 +O12O22)R0℄+ _n��(2M + 1)2 0Xi=�1 MXm1=0 MXm2=0 vip0m(m1;�i��)p0m(m2; k��) [(PA11PA23+PA13PA21)R�i + (PA12PA23 + PA13PA22)Rk�i + PA13PA23R0℄+ _n��(2M + 1)2 kXi=0 MXm1=0 MXm2=0 vip0m(m1; i��)p0m(m2; (k � i)��) [(PB11PB23+PB13PB21)Ri + (PB12PB23 + PB13PB22)Rk�i + PB13PB23R0℄+ _n��(2M + 1)2 1Xi=k MXm1=0 MXm2=0 vip0m(m1; k��)p0m(m2; (i� k)��) [(PC11PC23+PC13PC21)Ri + (PC12PC23 + PC13PC22)Ri�k + PC13PC23R0℄+� _n��2M + 1�2 0Xi=�1 0Xj=i MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1; (j � i)��)p0m(m2;�j��)p0m(m3; k��) [(QA11QA22 +QA12QA21)Rj�i℄+� _n��2M + 1�2 0Xi=�1 kXj=0 MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1;�i��)p0m(m2; j��)p0m(m3; (k � j)��) [(QB11QB22 +QB12QB21)Rj�i℄+� _n��2M + 1�2 0Xi=�1 1Xj=k MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1;�i��)p0m(m2; k��)p0m(m3; (j � k)��) [(QC11QC22 +QC12QC21)Rj�i℄+� _n��2M + 1�2 kXi=0 kXj=i MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1; i��)p0m(m2; (j � i)��)11



parameter unit valuemodel � AR2(yn = �1yn�1 + �2yn�2 + an)model parameters � �1 = 1:8, �2 = �0:9sampling frequen
y (primary series) kHz 10mean velo
ity ms�1 0.0varian
e m2s�2 0.3observation time s 1 000mean data rate (se
ondary series) kHz 1.0noise power m2s�2 0.0velo
ity bias � noTable 1: Simulation parameters for single realizationsp0m(m3; (k � j)��) [(QD11QD22 +QD12QD21)Rj�i℄+� _n��2M + 1�2 kXi=0 1Xj=k MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1; i��)p0m(m2; (k � i)��)p0m(m3; (j � k)��) [(QE11QE22 +QE12QE21)Rj�i℄+� _n��2M + 1�2 1Xi=k 1Xj=i MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1; k��)p0m(m2; (i� k)��)p0m(m3; (j � i)��) [(QF11QF22 +QF12QF21)Rj�i℄ (38)with the pre-fa
tors vi = � 0:5 for i 2 [0; k℄1 otherwise (39)vj = � 0:5 for j 2 [0; k℄1 otherwise (40)v= = � 0:5 for i = j1 otherwise (41)to minimize the edge artefa
ts.The theoreti
 ACF of the simulation has been used to 
al
ulate the expe
tation of the ACFfrom �ltered (high pass and low pass) data sets. The ACF are transformed to the frequen
ydomain using the Fourier transform. Figure 6 shows the results of a 
omputer simulation [3℄. Itshows a good similarity of the 
al
ulated PSD expe
tation and the PSD estimation from �ltereddata. The simulation parameters are listed in table 1. A single realization (redu
ed observationtime) of the simulated data set is shown in �gure 5.3.1.2 Constant TimeFor the derivation of the ACF expe
tation EfR0kg of �ltered data sets the intera
tion of twopoints �1 = k1�� and �2 = k2�� (see �gure 1a) is of interest. There are four basi
 time regimes(see �gure 7) depending on the time lag.1. The time windows of �1 and �2 are non-overlapping (� � 2B, �gure 7a). There are m1independent samples within the time window of �1 and m2 independent samples within12



Figure 5: Simulated LDA data set

Figure 6: The PSD of a simulated LDA data set, �ltered symmetri
ally with a 
onstant numberof samples 
ompared to the PSD of the un�ltered data set (FST and LN)
13
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�2 +B�2 +B�1 +BFigure 7: Time regimes for the symmetri
 �lter with a 
onstant time windowthe time window of �2. The �ltered samples areyk1 = 1m1 + 1  vs1xk1 + vo m1Xi=1 xs1+i! (42)yk2 = 1m2 + 1  vs2xk2 + vo m2Xi=1 xs2+i! (43)with vs1 = 1 ; vs2 = 1 and vo = 1 for the low passvs1 = m1 ; vs2 = m2 and vo = �1 for the high passThe samples within the sums are shifted by the indi
es s1 and s2 respe
tively. They areseparated in that way that all samples are independent.For the ACF expe
tation followsEfR0kg = Efyk1yk2g (44)= E( 1(m1 + 1)(m2 + 1)  vs1xk1 + vo m1Xi=1 xs1+i! vs2xk2 + vo m2Xi=1 xs2+i!)= 1Xm1=0 1Xm2=0 pm(m1; 2B)pm(m2; 2B)(m1 + 1)(m2 + 1) E(vs1vs2xk1xk2 + vs1voxk1 m2Xi=1 xs2+i+vs2voxk2 m1Xi=1 xs1+i + v2o  m1Xi=1 xs1+i! m2Xi=1 xs2+i!) (45)with the probability pm(m; �t) of m independent samples within the interval �t (equa-tion 36). The m1 and m2 independent samples are equally distributed in the time interval[�1 �B; �1 +B℄ and [�2 �B; �2 +B℄ with the probability density m12B and m22B respe
tively.Therefore, from equation (45) followsEfR0kg = 1Xm1=0 1Xm2=0 pm(m1; 2B)pm(m2; 2B)(m1 + 1)(m2 + 1) 0�vs1vs2R(�) + vs1vom22B �+BZ��B R(t) dt+vs2vom12B �+BZ��B R(t) dt+ v2om1m24B2 BZ�B �+BZ��B R(t2 � t1) dt2 dt11A14



= 1Xm1=0 1Xm2=0 pm(m1; 2B)pm(m2; 2B)(m1 + 1)(m2 + 1) �vs1vs2R(�) + vo(vs1m2 + vs2m1)2B�+BZ��B R(t) dt+ v2om1m24B2 BZ�B �+BZ��B R(t2 � t1) dt2 dt11A (46)2. The time windows of �1 and �2 are overlapping parti
ularly, xk1 is not a member of thelo
al group at �2 and vi
e versa (B < � < 2B, �gure 7b). There are m1 independentsamples within the interval [�1 � B; �2 � B℄, m2 independent samples within the interval[�1 + B; �2 + B℄ and m
 independent samples within the interval [�2 � B; �1 + B℄. The�ltered samples areyk1 = 1m1 +m
 + 1  vs1xk1 + vo m1Xi=1 xs1+i + vo m
Xi=1 xs
+i! (47)yk2 = 1m2 +m
 + 1  vs2xk2 + vo m2Xi=1 xs2+i + vo m
Xi=1 xs
+i! (48)with vs1 = 1 ; vs2 = 1 and vo = 1 for the low passvs1 = m1 +m
 ; vs2 = m2 +m
 and vo = �1 for the high passThe samples within the sums are shifted by the indi
es s1, s2 and s
 respe
tively. Theyare separated in that way that the samples of di�erent sums are independent.For the ACF expe
tation followsEfR0kg = Efyk1yk2g (49)= E( 1(m1 +m
 + 1)(m2 +m
 + 1)  vs1xk1 + vo m1Xi=1 xs1+i + vo m
Xi=1 xs
+i! vs2xk2 + vo m2Xi=1 xs2+i + vo m
Xi=1 xs
+i!)= 1Xm1=0 1Xm2=0 1Xm
=0 pm(m1; �)pm(m2; �)pm(m
; 2B � �)(m1 +m
 + 1)(m2 +m
 + 1) E fvs1vs2xk1xk2+vs1voxk1 m2Xi=1 xs2+i + vs2voxk2 m1Xi=1 xs1+i + vo(vs1xk1 + vs2xk2 ) m
Xi=1 xs
+i+v2o  m1Xi=1 xs1+i! m2Xi=1 xs2+i!+ v2o  m1Xi=1 xs1+i + m2Xi=1 xs2+i! m
Xi=1 xs
+i!+v2o  m
Xi=1 xs
+i!29=; (50)The m1, m2 and m
 independent samples are equally distributed in the time interval[�1 � B; �2 � B℄, [�1 + B; �2 + B℄ and [�2 � B; �1 + B℄ with the probability density m1� ,m2� and m
2B�� respe
tively. The produ
ts of the sums are independent, ex
epting the lastterm. The square of the sum has to be written as m
Xi=1 xs
+i!2 = m
Xi=1 x2s
+i + m
Xi=1 m
Xj=1j 6=i xs
+ixs
+j (51)15



with the produ
ts xs
+ixs
+j of independent samples.Therefore, from equation (50) followsEfR0kg = 1Xm1=0 1Xm2=0 1Xm
=0 pm(m1; �)pm(m2; �)pm(m
; 2B � �)(m1 +m
 + 1)(m2 +m
 + 1)0�vs1vs2R(�) + vs1vom2� �+BZB R(t) dt+ vs2vom1� �+BZB R(t) dt+vs1vom
2B � � BZ��B R(t) dt+ vs2vom
2B � � BZ��B R(t) dt+v2om1m2�2 ��BZ�B �+BZB R(t2 � t1) dt2 dt1 + v2om
m1�(2B � �) ��BZ�B BZ��B R(t2 � t1) dt2 dt1+ v2om
m2�(2B � �) BZ��B �+BZB R(t2 � t1) dt2 dt1 + v2om
R(0)+v2om
(m
 � 1)(2B � �)2 BZ��B BZ��B R(t2 � t1) dt2 dt11A= 1Xm1=0 1Xm2=0 1Xm
=0 pm(m1; �)pm(m2; �)pm(m
; 2B � �)(m1 +m
 + 1)(m2 +m
 + 1)0�vs1vs2R(�) + vo(vs1m2 + vs2m1)� �+BZB R(t) dt+vom
(vs1 + vs2)2B � � BZ��B R(t) dt+ v2om1m2�2 ��BZ�B �+BZB R(t2 � t1) dt2 dt1+v2om
(m1 +m2)�(2B � �) ��BZ�B BZ��B R(t2 � t1) dt2 dt1 + v2om
R(0)+v2om
(m
 � 1)(2B � �)2 BZ��B BZ��B R(t2 � t1) dt2 dt11A (52)3. The time windows of �1 and �2 are overlapping parti
ularly, xk1 is a member of the lo
algroup at �2 and vi
e versa (0 < � � B, �gure 7
). There arem1 independent samples withinthe interval [�1 �B; �2 �B℄, m2 independent samples within the interval [�1 + B; �2 + B℄and m
 independent samples within the interval [�2 �B; �1 +B℄. The �ltered samples areyk1 = 1m1 +m
 + 2  vs1xk1 + voxk2 + vo m1Xi=1 xs1+i + vo m
Xi=1 xs
+i! (53)yk2 = 1m2 +m
 + 2  voxk1 + vs2xk2 + vo m2Xi=1 xs2+i + vo m
Xi=1 xs
+i! (54)16



with vs1 = 1 ; vs2 = 1 and vo = 1 for the low passvs1 = m1 +m
 + 1 ; vs2 = m2 +m
 + 1 and vo = �1 for the high passThe samples within the sums are shifted by the indi
es s1, s2 and s
 respe
tively. Theyare separated in that way that the samples of di�erent sums are independent.For the ACF expe
tation followsEfR0kg = Efyk1yk2g (55)= E( 1(m1 +m
 + 2)(m2 +m
 + 2)  vs1xk1 + voxk2 + vo m1Xi=1 xs1+i+vo m
Xi=1 xs
+i! voxk1 + vs2xk2 + vo m2Xi=1 xs2+i + vo m
Xi=1 xs
+i!)= 1Xm1=0 1Xm2=0 1Xm
=0 pm(m1; �)pm(m2; �)pm(m
; 2B � �)(m1 +m
 + 2)(m2 +m
 + 2) E �(vs1vs2 + v2o)xk1xk2+vo(vs1x2k1 + vs2x2k2) + vo(vs1xk1 + voxk2) m2Xi=1 xs2+i + vo(vs2xk2+voxk1) m1Xi=1 xs1+i + vo((vs1 + vo)xk1 + (vs2 + vo)xk2 ) m
Xi=1 xs
+i+v2o  m1Xi=1 xs1+i! m2Xi=1 xs2+i!+ v2o  m1Xi=1 xs1+i + m2Xi=1 xs2+i! m
Xi=1 xs
+i!+v2o  m
Xi=1 xs
+i!29=; (56)The m1, m2 and m
 independent samples are equally distributed in the time interval[�1 �B; �2 �B℄, [�1 +B; �2 +B℄ and [�2 �B; �1 +B℄ with the probability density m1� , m2�and m
2B�� respe
tively. The produ
ts of the sums are independent, ex
epting the last term.The square of the sum has to be written like in equation (51) with produ
ts of independentsamples.Therefore, from equation (56) followsEfR0kg = 1Xm1=0 1Xm2=0 1Xm
=0 pm(m1; �)pm(m2; �)pm(m
; 2B � �)(m1 +m
 + 1)(m2 +m
 + 1)0�(vs1vs2 + v2o)R(�) + vo(vs1 + vs2)R(0) + vs1vom2� �+BZB R(t) dt+v2om2� BZB�� R(t) dt+ vs2vom1� �+BZB R(t) dt+ v2om1� ��BZ�B R(t) dt+vo(vs1 + vo)m
2B � � BZ��B R(t) dt+ vo(vs2 + vo)m
2B � � BZ��B R(t) dt+v2om1m2�2 ��BZ�B �+BZB R(t2 � t1) dt2 dt1 + v2om
m1�(2B � �) ��BZ�B BZ��B R(t2 � t1) dt2 dt117



+ v2om
m2�(2B � �) BZ��B �+BZB R(t2 � t1) dt2 dt1 + v2om
R(0)+v2om
(m
 � 1)(2B � �)2 BZ��B BZ��B R(t2 � t1) dt2 dt11A= 1Xm1=0 1Xm2=0 1Xm
=0 pm(m1; �)pm(m2; �)pm(m
; 2B � �)(m1 +m
 + 1)(m2 +m
 + 1)�(vs1vs2 + v2o)R(�) + vo(vs1 + vs2 + vom
)R(0)+vo(vs1m2 + vs2m1)� �+BZB R(t) dt+ v2o(m1 +m2)� ��BZ�B R(t) dt+vom
(vs1 + vs2 + 2vo)2B � � BZ��B R(t) dt+ v2om1m2�2 ��BZ�B �+BZB R(t2 � t1) dt2 dt1+v2om
(m1 +m2)�(2B � �) ��BZ�B BZ��B R(t2 � t1) dt2 dt1+v2om
(m
 � 1)(2B � �)2 BZ��B BZ��B R(t2 � t1) dt2 dt11A (57)4. The time windows of �1 and �2 are overlapping 
ompletely. Nevertheless, using the slot-
orrelation without selfprodu
ts the times �1 and �2 and hen
e the 
orresponding samplesxk1 and xk2 have a small deviation (� = 0, �gure 7d). The sample xk1 is a member of thelo
al group at �2 and vi
e versa. There are m
 independent samples within the interval[�1 �B = �2 �B; �1 +B = �2 +B℄. The �ltered samples areyk1 = 1m
 + 2  vsxk1 + voxk2 + vo m
Xi=1 xs
+i! (58)yk2 = 1m
 + 2  voxk1 + vsxk2 + vo m
Xi=1 xs
+i! (59)with vs = 1 and vo = 1 for the low passvs = m
 + 1 and vo = �1 for the high passFor the ACF expe
tation followsEfR0kg = Efyk1yk2g (60)= E( 1(m
 + 2)2  vsxk1 + voxk2 + vo m
Xi=1 xs
+i! voxk1 + vsxk2 + vo m
Xi=1 xs
+i!)= 1Xm
=0 pm(m
; 2B)(m
 + 2)2 E �(v2s + v2o)xk1xk2 + vovs(x2k1 + x2k2)18



+vo(vs + vo)(xk1 + xk2) m
Xi=1 xs
+i + v2o  m
Xi=1 xs
+i!29=; (61)The m
 independent samples are equally distributed in the time interval [�1 � B = �2 �B; �1 + B = �2 + B℄ with the probability density m
2B . The square of the sum has to bewritten like in equation (51) with produ
ts of independent samples.Therefore, from equation (61) followsEfR0kg = 1Xm
=0 pm(m
; 2B)(m
 + 1)2 0�(v2s + v2o)R(0) + 2vovsR(0) + 2vo(vs + vo)m
2B BZ�B R(t) dt+v2om
R(0) + v2om
(m
 � 1)(2B)2 BZ�B BZ�B R(t2 � t1) dt2 dt11A= 1Xm
=0 pm(m
; 2B)(m
 + 1)2 0�((vs + vo)2 + v2om
)R(0) + 2vom
(vs + vo)2B BZ�B R(t) dt+v2om
(m
 � 1)(2B)2 BZ�B BZ�B R(t2 � t1) dt2 dt11A (62)There are two types of integrals:bZa R(t) dt and b1Za1 b2Za2 R(t2 � t1) dt2 dt1 (63)Presuming that b1 > a1 and b2 > a2 the se
ond integral 
an be 
al
ulated throughb
Za
 v
R(t) dt (64)with a
 = a2 � b1 (65)b
 = b2 � a1 (66)v
 = min(vm; vt) (67)vm = min(b1 � a1; b2 � a2) (68)vt = min(t� a
; b
 � t) (69)Both 
an be 
al
ulated using numeri
al summation. Presuming that � and B and hen
e also aand b have the temporal resolution �� with b > a, b1 > a1 and b2 > a2, the integrals 
an beapproximated through bZa R(t) dt � �� b=��Xi=a=�� vAiRjij (70)b
Za
 v
R(t) dt � �� b
=��Xi=a
=�� vBiRjij (71)19



Figure 8: The PSD of a simulated LDA data set, �ltered symmetri
ally with a 
onstant timewindowTo minimize edge artefa
ts the pre-fa
torsvAi = � 1=2 for i 2 [a=�� ; b=�� ℄1 otherwise (72)vBi = 8>><>>: ��=8 for i 2 [a
=�� ; b
=�� ℄vm ���=8 for i 2 [(a
 + vm)=�� ; (b
 � vm)=�� ℄ and (a
 + vm) 6= (b
 � vm)vm ���=4 for i 2 [(a
 + vm)=�� ; (b
 � vm)=�� ℄ and (a
 + vm) = (b
 � vm)vt otherwise (73)Further edge artefa
ts o

ure for � = B. This is the border between the time regimes 2and 3. Using the slot
orrelation for the ACF estimation, both time regimes o

ure in this slot.Therefore the 
ontributions of both time regimes have to be 
al
ulated and averaged to a �nalresult. The other transitions are un
ompli
ated.The theoreti
 ACF of the simulation has been used to 
al
ulate the expe
tation of the ACFfrom �ltered (high pass and low pass) data sets. The ACF are transformed to the frequen
ydomain using the Fourier transform. Figure 8 shows the results of the 
omputer simulation. Itshows a good similarity of the 
al
ulated PSD expe
tation and the PSD estimation from �ltereddata.3.2 Asymmetri
 Filter3.2.1 Constant Number of SamplesThe derivation of the �lter 
hara
teristi
 for asymmetri
 �ltering with a 
onstant number ofsamples 
orrespond to that of the symmetri
 �lter with only one time 
ase. Furthermore, thenumber of independent samples between two points in time is not needed. The derivations aresimilar for the high pass and the low pass. Only two di�erent 
oe�
ients are ne
essary:vs = 1 and vo = 1 for the low passvs =M and vo = �1 for the high passThe �ltered samples areyi = 12M + 1 24vsxi + vo0� �1Xj=�M xi+j + MXj=1 xi+j1A35 (74)20



To derive the expe
tation of R0k for a given time lag � = k�� with the temporal resolution ��the �ltered samples at two di�erent points at the time �1 = k1�� and �2 = k2�� (see �gure 1b)are of interest. yk1 = 1M + 1 0�vsxk1 + vo �1Xj=�M xk1+j1A (75)yk2 = 1M + 1 0�vsxk2 + vo MXj=1 xk2+j1A (76)Be
ause the samples in both sums are 
ompletely independent, for the expe
tation of theACF followsEfR0kg = Efyk1yk2g (77)= 1(M + 1)2E8<:0�vsxk1 + vo �1Xj=�M xk1+j1A0�vsxk2 + vo MXj=1 xk2+j1A9=;= 1(M + 1)2E8<:v2sxk1xk2 + vsvoxk1 MXj=1 xk2+j + vsvoxk2 �1Xj=�M xk1+j+v2o0� MXj=1 xk2+j1A0� �1Xj=�M xk1+j1A9=;= 1(M + 1)2 24v2sR(�) + 2vsvo 1Z0 pg(t)R(� + t) dt+v2o 1Z0 1Z0 pg(t1)pg(t2)R(� + t1 + t2) dt2 dt135 (78)with the probability densitypg(t) = ( _n for t = 0_nPM�1i=0 (t _n)ii! e�t _n otherwise (79)of the presen
e of a sample at the time t away from �1 or �2 and being a member of the
orresponding lo
al group.The integrals have to be 
al
ulated numeri
ally with the time resolution �� of the ACF.Equation (78) be
omesEfR0kg = 1(M + 1)2 "v2sRk + 2vsvo�� 1Xi=0 vipg(i��)Rk+i+v2o(��)2 1Xi=0 1Xj=0 vivjpg(i��)pg(j��)Rk+i+j35 (80)with the pre-fa
tors vi = � 0:5 for i = 01 otherwise (81)vj = � 0:5 for j = 01 otherwise (82)21



Figure 9: The PSD of a simulated LDA data set, �ltered asymmetri
ally with a 
onstant numberof samplesto redu
e the edge artefa
ts.An important advantage of this �lter type is the linearity of the transformation from the trueACF R to the expe
ted ACF of the �ltered data set R0. Therefore, the equation (80) has to be
al
ulated only on
e for k = 0 leading to a dis
rete �lter ve
tor fk. The expe
tation of the ACFfor the �ltered data be
omes EfR0kg = fk �Rk (83)with the 
onvolution operator �.The theoreti
 ACF of the simulation has been used to 
al
ulate the expe
tation of the ACFfrom �ltered (high pass and low pass) data sets. The ACF are transformed to the frequen
ydomain using the Fourier transform. Figure 9 shows the results of the 
omputer simulation. Itshows a good similarity of the 
al
ulated PSD expe
tation and the PSD estimation from �ltereddata.3.2.2 Constant TimeThe derivation of the �lter 
hara
teristi
 for asymmetri
 �ltering with a 
onstant time window
orrespond to that of the symmetri
 �lter with only one time regime. For the derivation ofthe ACF expe
tation EfR0kg of �ltered data sets the intera
tion of two points �1 = k1�� and�2 = k2�� (see �gure 1b) is of interest.The time windows of �1 and �2 are non-overlapping. There are m1 independent sampleswithin the time window of �1 and m2 independent samples within the time window of �2. The�ltered samples are yk1 = 1m1 + 1  vs1xk1 + vo m1Xi=1 xk1�i! (84)yk2 = 1m2 + 1  vs2xk2 + vo m2Xi=1 xk2+i! (85)with vs1 = 1 ; vs2 = 1 and vo = 1 for the low passvs1 = m1 ; vs2 = m2 and vo = �1 for the high passThe samples within the sums are independent.22



For the ACF expe
tation followsEfR0kg = Efyk1yk2g (86)= E( 1(m1 + 1)(m2 + 1)  vs1xk1 + vo m1Xi=1 xk1�i! vs2xk2 + vo m2Xi=1 xk2+i!)= 1Xm1=0 1Xm2=0 pm(m1;B)pm(m2;B)(m1 + 1)(m2 + 1) E(vs1vs2xk1xk2 + vs1voxk1 m2Xi=1 xk2+i+vs2voxk2 m1Xi=1 xk1�i + v2o  m1Xi=1 xk1�i! m2Xi=1 xk2+i!) (87)with the probability pm(m; �t) of m independent samples within the interval �t (equation 36).The m1 and m2 independent samples are equally distributed in the time interval [�1�B; �1℄ and[�2; �2 +B℄ with the probability density m1B and m2B respe
tively.Therefore, from equation (87) followsEfR0kg = 1Xm1=0 1Xm2=0 pm(m1;B)pm(m2;B)(m1 + 1)(m2 + 1) 0�vs1vs2R(�) + vs1vom2B BZ0 R(� + t) dt+vs2vom1B BZ0 R(� + t) dt+ v2om1m2B2 0Z�B BZ0 R(� + t2 � t1) dt2 dt11A= 1Xm1=0 1Xm2=0 pm(m1;B)pm(m2;B)(m1 + 1)(m2 + 1) �vs1vs2R(�) + vo(vs1m2 + vs2m1)BBZ0 R(� + t) dt+ v2om1m2B2 2BZ0 (B � jB � tj)R(� + t) dt1A (88)The integrals 
an be 
al
ulated using numeri
al summation. Presuming that � and B hasthe temporal resolution �� with B > 0 the integrals 
an be approximated throughBZ0 R(� + t) dt � �� B=��Xi=0 vAiRi (89)2BZ0 (B � jB � tj)R(� + t) dt � �� 2B=��Xi=0 vBiRi (90)To minimize edge artefa
ts the pre-fa
torsvAi = � 1=2 for i 2 [0;B=�� ℄1 otherwise (91)vBi = 8<: ��=8 for i 2 [0=�� ; 2B=�� ℄B ���=4 for i = B=��B � jB � i�� j otherwise (92)are used.This �lter 
an also be des
ribed as a linear transform from the true ACF R to the expe
tedACF of the �ltered data set R0. Therefore, the equation (88) has to be 
al
ulated only on
e for23



Figure 10: The PSD of a simulated LDA data set, �ltered asymmetri
ally with a 
onstant timewindowk = 0 leading to a dis
rete �lter ve
tor fk. The expe
tation of the ACF for the �ltered databe
omes EfR0kg = fk �Rk (93)with the 
onvolution operator �.The theoreti
 ACF of the simulation has been used to 
al
ulate the expe
tation of the ACFfrom �ltered (high pass and low pass) data sets. The ACF are transformed to the frequen
ydomain using the Fourier transform. Figure 10 shows the results of the 
omputer simulation. Itshows a good similarity of the 
al
ulated PSD expe
tation and the PSD estimation from �ltereddata.4 Filter Corre
tion4.1 Symmetri
 FilterThe expe
tation of the ACF 
al
ulated from the �ltered data EfR0g (equations 38, 46, 52, 57and 62) are linear fun
tions of the true ACF R. The sums 
an be sorted by the arguments ofthe true ACF. That leads to a matrix F that transforms the true ACF into the expe
tation ofthe ACF 
al
ulated from the �ltered data.EfR0g = FR (94)The inverse matrix F�1 
an be used to 
al
ulate a modi�ed ACF R� from the ACF R0estimated from measured and �ltered data.R� = F�1R0 (95)The modi�ed ACF is 
orre
ted for systemati
 errors 
onne
ted to the �lter.The theoreti
 ACF of the simulation has been used to 
al
ulate the expe
tation of the ACFfrom �ltered (
onstant number of samples and 
onstant time window, high pass and low pass)data sets. The ACF are transformed to the frequen
y domain using the Fourier transform.Figure 11 shows the results of the 
omputer simulation. It shows a good similarity of the
orre
ted PSD from �ltered data and the theoreti
 PSD derived from the simulation parameters.4.2 Asymmetri
 FilterLike des
ribed in se
tion 3.2.1 and se
tion 3.2.2 the asymmetri
 �lters 
an be written as a lineartransform from the true ACF R to the expe
ted ACF of the �ltered data set R0. Therefore, the24



Figure 11: The 
orre
ted PSD of a simulated LDA data set, �ltered symmetri
ally

25



Figure 12: The 
orre
ted PSD of a simulated LDA data set, �ltered asymmetri
allyequation (88) has to be 
al
ulated only on
e for k = 0 leading to a dis
rete �lter ve
tor fk. Theexpe
tation of the ACF for the �ltered data be
omesEfR0kg = fk �Rk (96)with the 
onvolution operator �.An inverse Filter and hen
e a modi�ed ACF estimation R� with 
orre
ted �lter errors 
anbe found from the �lter 
oe�
ients by the dis
rete and impli
ite de
onvolutionR�k = 1f0  R0k � K�k�1Xi=1 fjR�k+j! (97)with the maximum time lag (K � 1)�� . Be
ause of the use of R�k+j for the derivation of R�k the
al
ulation has to start with the maximum time lag R�K�1.The theoreti
 ACF of the simulation has been used to 
al
ulate the expe
tation of the ACFfrom �ltered (
onstant number of samples and 
onstant time window, high pass and low pass)data sets. The ACF are transformed to the frequen
y domain using the Fourier transform.Figure 12 shows the results of the 
omputer simulation. It shows a good similarity of the
orre
ted PSD from �ltered data and the theoreti
 PSD derived from the simulation parameters.
26



parameter unit valuenumber of realizations � 1 000model � AR2(yn = �1yn�1 + �2yn�2 + an)model parameters � �1 = 1:8, �2 = �0:9sampling frequen
y (primary series) kHz 10mean velo
ity ms�1 0.0varian
e m2s�2 0.3observation time s 10mean data rate (se
ondary series) kHz 1.0noise power m2s�2 0.0velo
ity bias � noharmoni
 amplitude ms�1 0.0/1.0harmoni
 frequen
y Hz 1.0Table 2: Simulation parameters for statisti
al investigations

Figure 13: Simulated LDA data set with periodi
 
omponent5 Statisti
al InvestigationsTo get information about the expe
tation and the variability of ACF and PSD estimators with�lter and 
orre
tion te
hniques a series of 1 000 realizations of LDA data sets were simulated(table 2). To simulate the usual task of LDA data �ltering, additionally to the normal data sets(�gure 5) another type of data was generated by adding a harmoni
 
omponent of given frequen
yand amplitude and randomly 
hosen phase (�gure 13). The 1 000 series of ea
h type werepro
essed by the di�erent �lter types (se
tion 2) and 
orre
ted in the des
ribed way (se
tion 4).The ACF of ea
h data set was transformed into the PSD using the Fourier transform. The setsof PSDs were analysed statisti
ally. For ea
h data and �lter type the expe
tation was estimatedthrough the mean PSD and the variability through the estimation's varian
e.Figure 14 shows the results for the symmetri
 �lters (high pass and low pass; 
onstantnumber of samples and 
onstant time window) without a periodi
 
omponent. Figure 15 showsthe 
orresponding results for the data sets with the periodi
 
omponent and �gures 16 and 17the results for the asymmetri
 �lters.For the data sets without a periodi
 
omponent (�gures 14 and 16) the systemati
 errors ofthe data �ltering 
an be 
orre
ted 
ompletely for all �lter types. But the estimation's variabilityis larger than the variability of the pro
edure without any �lter. Therefore, it doesn't make27



Figure 14: Empiri
al Expe
tation and estimation's variability for the symmetri
 �lters withouta periodi
 
omponent 28



Figure 15: Empiri
al Expe
tation and estimation's variability for the symmetri
 �lters with aperiodi
 
omponent 29



Figure 16: Empiri
al Expe
tation and estimation's variability for the asymmetri
 �lters withouta periodi
 
omponent 30



Figure 17: Empiri
al Expe
tation and estimation's variability for the asymmetri
 �lters with aperiodi
 
omponent 31



a) b)

Figure 18: Systemati
 errors (the step at 1 kHz) for symmetri
 high pass �ltering a) with alarge 
onstant number of samples and b) with a large 
onstant time length (data set without aperiodi
 
omponent)sense to use the �ltering te
hnique for data sets without signi�
ant power in the non-interestinglow-frequen
y range.For the data sets with a periodi
 
omponent (�gures 15 and 17) the systemati
 errors ofthe data �ltering 
an be 
orre
ted only for the high pass �lters. The estimates using the lowpass �lters are 
ompletely wrong. The 
ourse of that e�e
t is the high power in large times
ales that was not used in the derivation of the �lter 
hara
teristi
s. The high pass �ltersdon't show this e�e
t, be
ause they suppress just this frequen
y range. Furthermore, it 
an beseen that the variability of estimation is redu
ed for the high pass �lters, but only for higherfrequen
ies. The low frequen
ies are suppressed by the �lters hen
e the 
oe�
ients for the�lter 
orre
tion are heavy in this range. This is more distin
t for the symmetri
 �lters be
ausethey suppress the power in the low-frequen
y range more heavy than the asymmetri
 �lters.Therefore, the 
orre
tion 
oe�
ients are more heavy for the symmetri
 �lters and hen
e thevariability is higher, espe
ially for low frequen
ies. That makes the asymmetri
 high pass �lteringwith the 
orresponding 
orre
tion preferable for this problemati
 type of LDA data. Besides,the derivation of the �lter 
hara
teristi
s and the 
orre
tion is signi�
antly more simple for this�lter type and the LN as well as the FST 
an be used to redu
e the estimation's variability on
emore.6 Re
ommendationsThe �ltering te
hnique should be used only in the 
ase of signi�
ant power in a non-interestingfrequen
y range. To separate the high frequen
y part an asymmetri
 high pass �lter should beused with the 
orresponding 
orre
tion. It is equal whether a 
onstant number of samples or a
onstant time window has been used. The ACF should be 
al
ulated with the slot 
orrelationwithout self produ
ts. The asymmetri
 �ltering with it's 
orre
tion 
an be 
ombined with theFST and the LN to redu
e the estimation's variability.The �ltering te
hniques should not be used without an adequate 
orre
tion be
ause of sys-temati
 errors, even in the 
ase of symmetri
 �ltering with large numbers of samples or largetime windows to 
al
ulate the lo
al mean (�gure 18).To 
al
ulate the statisti
s of the low frequen
y range a redu
ed temporal resolution 
an beused. There are no aliasing errors (�gure 19). Note that the variability of the spe
tral estimateis proportional to the number of slots and the time step �� . A redu
ed temporal resolution withthe same number of slots leads to an in
reased variability (�gure 20). Furthermore, this leads to32



a) b)

Figure 19: PSD with redu
ed temporal resolution a) without and b) with a periodi
 
omponentof 1Hz

Figure 20: Variability of the PSD estimate with redu
ed temporal resolution (data set withouta periodi
 
omponent)
33



a) b)

Figure 21: Systemati
 errors for symmetri
 low pass �ltering a) with a 
onstant number ofsamples and b) with a 
onstant time length (data set without a periodi
 
omponent)

Figure 22: Systemati
 error for an averaging �lter (data set without a periodi
 
omponent)an in
reased (to the power of two) number of 
al
ulations. Therefore it is ne
essary to redu
ethe number of samples.The low pass �lters should not be used for this. Without a �lter 
orre
tion there is asystemati
 error in the ACF or PSD of the �ltered data (�gure 21). It is not an aliasing error,but it is a 
omplex dependen
e of the result on the true data statisti
s and the �lter. The useof the low pass �lters together with their 
orre
tion leads to 
ompletely wrong results in thepresen
e of a periodi
ity with a low frequen
y (�gures 15 and 17). Furthermore, these �lters donot lead to a redu
ed data set.An averaging �lter with tAV i = 1M MiXj=M(i�1)+1 tj (98)yAV i = 1M MiXj=M(i�1)+1 xj (99)should never be used to redu
e the number of data samples in an LDA data set, be
ause ofsystemati
 errors (�gure 22). Furthermore, the sampling statisti
s of the �ltered data set is notLDA data like. That leads to problems with the slot 
orrelation.34



Figure 23: Expe
tation and variability of the downsampling pro
edure (data set without aperiodi
 
omponent)A solution of that problem is the downsampling. For ea
h original data sample an independentrandom number is taken from the interval [0; 1). Only these samples are written to the new dataset where this random number is less than 1=M . That leads to a redu
ed number of samplesbut some information are lost like with a redu
ed data rate. The variability of following ACFestimations is in
reased (�gure 23). But the new data set has an LDA 
onform sampling statisti
,there are no problems with the slot 
orrelation, even not with the FST or the LN, and there isthe possibility of 
as
ading several downsampling �lters to expand the frequen
y range repeated.7 SummeryThe 
hara
teristi
s of LDA data �ltering te
hniques, espe
ially of the �lter des
ribed in [8℄,
ould be derived. The systemati
 errors of this te
hnique 
ould be predi
ted and removedsu

essfully. New, asymmetri
 �lters were developed whi
h lead to better results together witheasier predi
tion and 
orre
tion expressions. The proof 
ould be furnished that the asymmetri
high pass �ltering and the 
orresponding 
orre
tion are useful to redu
e the variability of ACFor PSD estimations in the presen
e of a signi�
ant periodi
 
omponent with a low frequen
y. Forthe statisti
al estimations with lower temporal resolution a bias free pro
edure was developed toredu
e the number of data samples and hen
e the 
omputational expenditure.8 Posts
riptumIn 
onne
tion with investigations how pro
essor delays in�uen
e the results of ACF and PSDestimations using the new �lter algorithms the re�ned expression for the probability density(equation 79) pg(t) = ( _n for t = 0_nPM�1i=0 ((t�(i+1)t0) _n)ii! e�(t�(i+1)t0) _n otherwise (100)was used with respe
t to the pro
essor delay t0. It presumes that a group of i samples needs atleast an interarrival time of (i+1)t0 between the pre
eding and the following sample. Be
ause ofthe limited number of samples within a given time interval an additional norm fa
tor is ne
essaryin the 
ase of using a 
onstant time window (equations 36 and 86�88).pm(m;�t) = ( _n(�t�(m+1)t0))mm! e� _n(�t�(m+1)t0)Pb�t=t0
i=0 ( _n(�t�(i+1)t0))ii! e� _n(�t�(i+1)t0) (101)35



a) b)

Figure 24: Predi
tion of the PSD of an asymmetri
ly �ltered data set with pro
essor delay a)with a 
onstant number of samples and b) with a 
onstant time windowa) b)

Figure 25: Mean of the 
orre
ted PSD of an asymmetri
ly �ltered data set with pro
essor delaya) with a 
onstant number of samples and b) with a 
onstant time windowThe predi
tion of the PSD of a �ltered data set (�gure 24) shows a good 
orresponden
e withthe estimation.Figures 25 and 26 show the mean and the varian
e of the PSD estimation using the 
orre
tionmethod. The 
orre
ted estimation has no signi�
ant deviations to the simulation ex
epting thelowest frequen
ies, where the estimation varian
e is very large.This is a basi
 problem of the �lter and 
orre
tion algorithms. The aim of the �lteringte
hnique is to redu
e the power in the low frequen
y range yielding to deviations. The aim ofthe 
orre
tion algorithm is to 
orre
t these deviations yielding to a higher estimation variability.The 
ombination of both algorithms brings out a better result 
ompared to the un�ltered dataonly if the �lter 
onstants (M or B) are 
hosen in that way that the �nal variability be
omessmaller. While the lowest frequen
ies of the PSD are not that important, the pro
edures arequite robust. But the estimation of ACF is very sensitive to the low frequen
y range of the PSD.The PSD in �gure 25 yield to signi�
ant deviations with large s
ales in the ACF (�gure 27).Note that this is not an e�e
t of the pro
essor delay, but it is a basi
 problem of the �lter and
orre
tion te
hnique.The 
on
lusions from these results are:� The new �lter and 
orre
tion te
hnique 
an be used to redu
e the variability of the PSDestimation in the high frequen
y range for LDA data sets with a periodi
ity of signi�
ant36



a) b)

Figure 26: Varian
e of the 
orre
ted PSD of an asymmetri
ly �ltered data set with pro
essordelay a) with a 
onstant number of samples and b) with a 
onstant time window
a) b)

Figure 27: Mean of the 
orre
ted ACF of an asymmetri
ly �ltered data set with pro
essor delaya) with a 
onstant number of samples and b) with a 
onstant time window
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a) b)

Figure 28: ACF estimation a) with un�ltered data and b) with large �lter 
onstantspower.� For the estimation of the ACF the algorithm should not be used be
ause of possible devi-ations with large s
ales. In that 
ase the un�ltered data set (�gure 28a) or a symmetri
�lter with large �lter 
onstants without a 
orre
tion (�gure 28b) should be prefered. Thevisible bend 
orresponds dire
tly to the large s
ale periodi
ity.A
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