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Abstract

The LDA technique is widely used in the study of turbulent flow fields. The two most
important statistical functions with information about the fluid dynamics are the autocorre-
lation function (ACF) and the power spectral density (PSD). The techniques for calculating
the ACF or the PSD of an LDA data set are sophisticated. Nevertheless, the computation
becomes difficult for a dominating low-frequency periodicity while the interesting frequency
range lies much higher. This report compares filter techniques statistically, derives correc-
tion algorithms for systematic deviations and investigates their usefulness. In the end a
recommendation is given how to handle this kind of data set to avoid systematic errors with
a minimum of estimation’s variability.

1 Introduction

The LDA technique is widely used in the study of turbulent flow fields. Two important statistical
functions with information about the fluid dynamics are the autocorrelation function (ACF) and
the power spectral density (PSD). The techniques for calculating the ACF or the PSD of an
LDA data set are sophisticated [2, 4]. The ACF and the PSD correspond through the Fourier
transform, hence they contain the same information. Therefore, estimators for ACF or PSD can
be compared by transforming one of these into the other. It is nearly the same which domain is
used for the comparison. Even the statistics (mean and variance) are comparable in time domain
as well as in frequency domain through the linearity of the Fourier transform. Nevertheless, the
computation becomes difficult for a dominating low-frequency periodicity, while the interesting
frequency range lies much higher, i.e. the investigation of micro-turbulence within cyclic flow
fields.

In [8] a filtering technique is used to reduce the estimation’s variability. But it can be
used to isolate the interesting high-frequency part of the spectrum containing the information
about micro-scale turbulence as well. Unfortunately, the results in [8] have a constant value for
frequencies below a characteristic cut-off frequency depending on the filter size. The description
of the used filter suggests that the PSD should disappear for lower frequencies. That effect was
not explained contentedly.

Furthermore, the ACF/PSD of the filtered data are changed through the filter in a charac-
teristic way. That leads to a systematic error in the ACF/PSD estimation. It can be seen in
[8] very clearly for the strong high pass filter with (n=1). Therefore, the authors judged this
filter to be not suitable. But this influence does not appear for filters with higher order, only the
characteristic cut-off frequency is shifted and the errors become acceptable for a given frequency
range.

The specific characteristic of the pre-filter technique is completely different to that of the
“particle rate filter” for LDA data reconstruction, i.e. for the sample-and-hold reconstruction
[1]. Therefore, the results of the pre-filtering technique are more realistic, especially for high
frequencies. Nevertheless, an estimation of the systematic deviations would be usefull to judge
the reliability of the results and to design a correction filter similar to the procedure given in [7].



Because of the non-regularly sampling the filtering of LDA data is non-linear. Therefore,
a description of the system using an impulse response is not suitable. That exclude all known
filtering techniques for equidistant sampled data sets, like convolution of correlation functions or
spectral amplification. A possible description of non-linear systems, the estimation of statistical
functions and their refinement is given in [7] where this technique was applied to the sample-
and-hold reconstruction successfully.

2 Filtering Techniques

2.1 Symmetric Filter
2.1.1 Constant Number of Samples

The first filter is similar to that in [8]. The original LDA data samples z; = z(t;) at sample
times t; are averaged to a local mean p;

1 M
Mi=2M+1.Z Tiyj (1)
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with a fixed number of samples M, on either side. The sample yup; = y(¢;) of the high pass
(HP) filtered series is found by

YHPi = Ti — [ (2)
leading to an LDA data series with the same sampling scheme like the original data set. Fur-
thermore, the local mean is used as the corresponding low pass (LP) signal.

YLpi = Wi (3)
The Fuzzy Slotting Technique (FST) [6]
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with the total number of samples N is used to estimate the ACF of the data set. The Local
Normalization (LN) [9, 5] and the Merged Technique [4] are not used because of the the more
difficult derivation of the filter characteristic. Figure 6 shows the filter effect on the PSD for a
simulated data set.

2.1.2 Constant Time

The second filter uses all original samples within an constant time window [t; — B;t; + B] with
a given maximum delay B, symmetric to the time ¢; of the sample x;. The local mean is given
through

"= il bty — ti)e,
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with the top head window function

_ [ 1 for|At|<B
b(At) = { 0 otherwise (7)
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Figure 1: Filter scheme a) symmetric filter; b) asymmetric filter using the cross correlation

and the total number of samples N in the data set. Therefore, the expression Z;VZI b(t;—ti) gives
the number of samples within the interval. The relative complicated mathematical description
of this filter does not reflect the possibility of an algorithmic implementation correctly. Using
the slot correlation a time limited data buffer already exists. Therefore, all routines of the slot
correlation can be used for the filtering as well. The filtered samples ygp; and yrp; are defined
similar to the filter using a constant number of samples (section 2.1.1). Figure 8 shows the filter
effect on the PSD for a simulated data set.

2.2 Asymmetric Filter

The mathematical description of the filter characteristics and the derivation of the expected ACF
of the filtered data set (section 3) becomes much more easy for asymmetrical filtering. In opposit
to the symmetric filters, the asymmetric filters use only samples before or after the processed
data sample for the calculation of the local mean (figure 1b). For a constant number of samples
the local mean becomes
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with the indices F refering to the foreward filter and B refering to the backward filter. Note,
that the backward filter is causal (excepting j = 0) and the foreward filter is non-causal. For a
constant time window the local mean becomes
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respectively. The filtered samples ypp; and ypp; are defined similar to the filter using the
symmetric filter (section 2.1).

To obtain a relatively easy description of the filter characteristics, the overlapping of filter
intervals during the convolution should be prevent (figure 1a). Therefore, instead of the ACF,
the cross correlation function (CCF) of the foreward and the backward filtered data is used.

- (11)



Only time lags of the CCF with non-overlapping filter intervals are taken as the ACF estimation
(figure 1b).
There are four advantages of the asymmetric filters:

1. a relatively simple mathematical description of the filter characteristics,

2. the filter characteristics function becomes linear (for the ACF, not for the time function),
3. a non-disappearing low-frequency PSD in the high pass path,

4. there are no modifications necessary for the LN.

The first two points lead to a reduced number of calculations. That makes an easy implemen-
tation of the algorithm in real applications possible. The third point looks like a disadvantage
in the first view, but if the power in the low frequency range is not suppressed completely the
correction coefficients in the inverted filter matrix (see section 4) become not as heavy as for
the symmetric filter and the corrected estimation becomes more reliable (especially the ACF
estimation). With the fourth point the Merged Technique, combining the FST and the LN
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can be used to calculate the CCF/ACF. Figures 9 and 10 show the filter effect on the PSD for
a simulated data set using an asymmetric filter with a constant number of samples and with a
constant time window respectively.

3 Filter Characteristics

3.1 Symmetric Filter
3.1.1 Constant Number of Samples

The filter characteristic can be described through the expectation of the ACF R’ using the
filtered data in terms of the original ACF R (see [7]). The derivations are similar for the high
pass and the low pass. Only two different coefficients are necessary:

vg =1 and v, =1 for the low pass
vs =2M and v, =—1 for the high pass



The filtered samples are
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To derive the expectation of R}, for a given time lag 7 = kA7 with the temporal resolution A7
the filtered samples at two different points in time 71 = k1 A7 and 7 = ko AT (see figure 1a) are
of interest.
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For the expectation of the ACF follows

E{R}} = E{yr, Yk, } (21)

Before the derivation of this expression a look at the probabilities of the different samples is
necessary:

1. The product of the filtered samples y, and yi, influences the result of the final ACF
estimation only under the condition that the samples at the two time lags 7, and 7 are
present. Therefore, the probability of presence is 1 for these samples.

2. The presence of the other samples at given times have a probability density ps(t) = n
depending on the data rate n. Note, that the integral of this probability density is not
equal to 1 because several samples can occur within a time interval. The samples are
independent and non-numerated, they can be exchanged without an influence to the results
(becomes important later).

Therefore, the products of every two samples have different joint probabilities:

1. The product zy, x, of the both samples at the time lags 71 and m have the joint probability
1.

(a) Presuming that xj, is not a member of the sample group that builds the local mean
at 7 and vice versa the sum of yg, contains only z, and yg, contains only zj, of
sample type 1. The product y, yx, contains only v2x, vy, of product type 1.

(b) If z4, is a member of this local group for 7 and vice versa then both sums contain
both samples. The product yg,yr, contain (vszg, + VoT, ) (VoTk, + VsTp,) = (V2 +
V) Tk, Thy + vsvo(zzl + w%z)

2. The products xp,z; with j # ki and x,x; with j # ks of one sample at 7y or 7 and
another sample at the time ¢ (¢ ¢ [r1;72]) have the joint probability n.

(a) Presuming that z; is a member of the local group at 71 and not a member of the
local group at 7o and xj, is not a member of the local group at 7 and vice versa the
sum of y;, contains only z; and y, contains only zj, of sample types building the
product type 2. The product yi, yx, contains only vsv,z 2k, of product type 2.

(b) Presuming that z; is a member of the local group at 7 and not a member of the
local group at 71 and xg, is not a member of the local group at 7o and vice versa the
sum of y;, contains only x4, and y, contains only z; of sample types building the
product type 2. The product yg, yr, contains only vsv,z;zk, of product type 2.



(c)

Presuming that z; is a member of the local group at 71 and a member of the local
group at 7 and x, is not a member of the local group at 7 and vice versa the sum
of yi, contains z, and x; and y;, contains z, and z; of sample types building the
product type 2. The product ys, yx, contains only v,v,a;(k, +Tk,) + vz} of product
type 2. The self product of z; is also of type 2, because if the sample exists also the
product exists.

Presuming that z; is a member of the local group at 7; and not a member of the local
group at 7 and zy, is a member of the local group at 7 and vice versa the sum of yy,
contains only z; and y;, contains x;, and z, of sample types building the product
type 2. The product yx, yr, contains v,z;(vo2r, + vs2,) of product type 2.

Presuming that z; is a member of the local group at 7 and not a member of the local
group at 7 and g, is a member of the local group at 75 and vice versa the sum of y;,
contains zy, and zy, and y, contains only z; of sample types building the product
type 2. The product yx, yr, contains v,z;(vs2r, + vox,) of product type 2.

Presuming that z; is a member of the local group at 7 and a member of the local
group at 7 and zg, is a member of the local group at 7 and vice versa the sums of
Yr, and yg, contains xj,, =i, and x; of sample types building the product type 2.

The product yg, yk, contains v,z;(vs + vo)(Zk, + T1,) +via; of product type 2.

3. The products z;z; with i;j & [ki; k2] of two samples at t; and ¢; (¢;;¢; & [r1;72]) have

the joint probability n

2. Because the samples are independent, it can be presumed that

t; < t;. With 7y < 15 the following four subcases are left.

(a)

(d)

If x; is a member of the local group at 7, and not a member of the local group at m
and z; is a member of the local group at 75 and not a member of the local group at 7
then the sum of y;, contains only z; and the sum of y;, contains only z; of samples
building a product of type 3. The product y, yr, contains only vgxiarj of type 3.

If z; is a member of the local group at 7; and not a member of the local group at 7
and z; is a member of the local group at 75 and a member of the local group at 7
then the sum of y;, contains z; and z; and the sum of y;, contains only z; of samples
building a product of type 3. The product yx, yx, contains only v2z;z; of type 3.

If z; is a member of the local group at 7, and a member of the local group at m and
x; is a member of the local group at 75 and not a member of the local group at 7
then the sum of y;, contains only z; and the sum of y;, contains z; and z; of samples
building a product of type 3. The product yx, yx, contains only v2z;z; of type 3.

If z; and z; are members of both local groups at 7; and 7» then the sum of y;, and
Yk, contain z; and z; of samples building a product of type 3. The product yi, yx,
contains 2v2z;x; of type 3.

Now equation (21) can be solved. It follows

= E{ye,yr, } = E{y(n)y(m)}

E{R}}

1

= @M+ {pra B{viz(r)z(12)} + proE{(vsz(11) + vox(72)) (vox(T1) + vex(T2))}

(2M + 1

+ / Ds(t) [D2a (t) E{vsvox(t)x(T2)} + pab (t) E{vsvox(t)x(T1)} + pac(t) E{vsv,x(t)
(z(11) + 2(m2)) + 0222 (t)} + paa(t) E{vox(t) (vox(T1) + vs2 (7))} + poe(t) E{vox(t)
(0s2(T1) 4 vox(12)) } + Par(t) E{vom(t) (vs + vo) (z(11) + z(72)) +v22>(t)}] dt
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Figure 2: Time and sample case for product type 1
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with the probability density ps(t) of the existence of a sample at the time ¢ and the probability
Day of the cases described above. The integration way of the second integral in the double
integral is a result of the independent (non-numbered) samples in the data set. Note, that p,,
depends on the order of 7, 75, t or ¢; and ¢ respectively and on the number of samples between
these points in time.

For the product types (1, 2 and 3) there are different cases for the membership of 7, 7 and
t or t; and t, respectively to the local groups at = and 7.

1. product type 1: There are m samples between 7 and 7» (figure 2). The sample at 7 is
a member of the local group at 7o and vica versa if m < M. This can be written like a

matrix ( )
_ Vg VoUp(m < M
0= ( VoUp(m < M) Vg ) (24)
with the binary function
1 if z is true
vp(w) = { 0 otherwise (25)

giving the contribution of xy, (first column) and zy, (second column) to the local group
of 7y (first raw) and 72 (second raw). The products O11021, O11022, 012091 and O12029
are of type 1.

2. product type 2:

(a) The sample time ¢ lies before 7;. There are m; samples between ¢ and 7, and my
samples between 7; and 7» (figure 3a). The sample at ¢t is a member of the local
group at 7 if m; < M. The sample at ¢t is a member of the local group at
if my + ms < M — 1. Note, that the sample at 71 is also a member in this case.
Therefore, the number of independent samples between ¢ and 75 must be less than
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Figure 3: Time and sample case for product type 2

M — 1. The sample at 7, is a member of the local group at 7 and vica versa if
mo < M. This can be written like a matrix
v VoUp(ma < M) VoUp(my < M)
Ps = s oUp o¥p 2
A < VoUp (Mo < M) Vg VoUp(Mmy +ma < M — 1) (26)

giving the contribution of zj, (first column), xj, (second column) and z; (third
column) to the local group of 7 (first raw) and 7» (second raw). The products
P11 Py3, PioPs3, Pi3Por, Pi3Pas and Pi3Po3 are of type 2.

(b) The sample time ¢ lies between 7, and 72. There are m; samples between 71 and ¢
and mo samples between ¢ and 7» (figure 3b). The sample at ¢ is a member of the
local group at 71 if my; < M. The sample at ¢ is a member of the local group at m
if my < M. The sample at 7 is a member of the local group at 7 and vica versa if
my +my < M — 1. Note, that the sample at ¢ is also a member of both groups in this
case. Therefore, the number of independent samples between 71 and 7 must be less
than M — 1. This can be written like a matrix

Py = < Vg VoUp(M1 +ma < M — 1) wovp(my < M) >
VoUp(mi1 +ma < M —1) Vs VoUp(ma < M)
(27)
(c) The sample time ¢ lies after 5. There are m; samples between 7, and 75 and mo
samples between 75 and ¢ (figure 3c). The sample at ¢ is a member of the local group at
T9 if mgy < M. The sample at ¢ is a member of the local group at 71 if m; +my < M —1.
Note, that the sample at 75 is also a member in this case. Therefore, the number of
independent samples between 71 and ¢t must be less than M — 1. The sample at 7y is
a member of the local group at 7 and vica versa if m; < M. This can be written like
a matrix

Vs VoUp(m1 < M) vvp(my +mo < M — 1) > (28)

Pe = ( VoUp(m1 < M) Us VoUp(ma < M)

3. product type 3:

(a) The sample times ¢; and t2 lie before 71. There are m; samples between ¢; and ¢,
mo samples between ¢5 and 71 and mg3 samples between 7 and 7» (figure 4a). The
sample at ¢; is a member of the local group at 71 if m; + my < M — 1. The sample
at ty is a member of the local group at 7; if ms < M. The sample at ¢; is a member
of the local group at 75 if m; + ma + mg < M — 2. The sample at t; is a member of
the local group at 7 if mo +m3 < M — 1. The sample at 71 is a member of the local
group at 7 and vica versa if m3 < M. This can be written like a matrix

Q4= < VoUp(my +ma < M —1) VoV (ma < M) > (29)
A= VoUp(my +ma +ms < M —2) vv,(ma +ms < M —1)

giving the contribution of z(¢;) (first column) and z(t2) (second column) to the local
group of 7 (first raw) and 7 (second raw). The samples at 71 and 75 do not have a
contribution of product type 3. Only the products @Q11Q22 and Q12Q2; are of type 3.



(b)

The sample time ¢, lies before 7 and ¢ lies between 71 and 5. There are m; samples
between t; and 7y, ms samples between 71 and t» and mg samples between ¢, and
Ty (figure 4b). The sample at ¢; is a member of the local group at 7, if my < M.
The sample at ¢, is a member of the local group at 7, if ms < M. The sample at t;
is a member of the local group at 7 if my + m2 + m3 < M — 2. The sample at ¢,
is a member of the local group at 7 if mg < M. The sample at 7; is a member of
the local group at 75 and vica versa if my + m3 < M — 1. This can be written like a
matrix
_ VoUp(ma < M) VoUp(me < M)
Qp = (30)
( VoUp (M1 +ma +mg < M —2) v,vp(mg < M) >

The sample time ¢; lies before 7 and t5 lies after 7o. There are m; samples between ¢
and 71, mo samples between 71 and 75 and mgs samples between 75 and to (figure 4c).
The sample at ¢; is a member of the local group at 7y if m; < M. The sample at
to is a member of the local group at 7 if ms + m3 < M — 1. The sample at ¢; is a
member of the local group at 7 if m; + my < M — 1. The sample at ¢5 is a member
of the local group at 7» if m3 < M. The sample at 7 is a member of the local group
at 7 and vica versa if my < M. This can be written like a matrix

vovp(ml < M) 'Uo'Up(mQ +mg < M — 1) > (31)

Qo = ( VoUp(m1 +mae < M —1) VoUp(mg < M)

The sample times #; and t¢3 lie between 71 and 7. There are m; samples between 7
and t1, mo samples between ¢; and ¢, and mg samples between ¢ and 7» (figure 4d).
The sample at ¢; is a member of the local group at 7y if m; < M. The sample at
ty is a member of the local group at 7, if my + my < M — 1. The sample at ¢ is a
member of the local group at 7 if ms + m3 < M — 1. The sample at ¢y is a member
of the local group at 7» if m3 < M. The sample at 7 is a member of the local group
at 7 and vica versa if m; + mo + m3 < M — 2. This can be written like a matrix

vovp(ml < M) 'Uo'Up(ml +ma <M — 1) ) (32)

@p = ( VoUp(me +mg < M — 1) VoUp(mg < M)

The sample time ¢; lies between 71 and 75 and t5 lies after 5. There are m; samples
between 71 and 1, my samples between t; and 75 and m3 samples between 7 and
(figure 4e). The sample at ¢; is a member of the local group at 7 if m; < M. The
sample at t, is a member of the local group at 7 if my + my + mg < M — 2. The
sample at ¢; is a member of the local group at 7 if ms < M. The sample at ¢, is a
member of the local group at 75 if mg < M. The sample at 71 is a member of the
local group at 7 and vica versa if m; + ma < M — 1. This can be written like a
matrix

Op = < VoUp(m1 < M) wvovp(my +ma +mg < M —2) ) (33)
B\ wovp(mg < M) VoUp(ms < M)

The sample times ¢; and t, lie after 75. There are m; samples between 7 and 75, ms
samples between 75 and ¢; and mg3 samples between 1 and t» (figure 4f). The sample
at ¢, is a member of the local group at 7 if my + mo < M — 1. The sample at t, is
a member of the local group at 7, if m; + ma + mg < M — 2. The sample at #; is
a member of the local group at 7 if my < M. The sample at t5 is a member of the
local group at 75 if my + m3 < M — 1. The sample at 71 is a member of the local

group at 7 and vica versa if my; < M. This can be written like a matrix
QF:(vovp(m1+m2<M—1) VoUp(My + ma +mg < M — 2) > (34)
VoUp(ma < M) VoUp(me +mg < M — 1)
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Figure 4: Time and sample case for product type 3

To make the joint probabilities of the several time order and product cases not too compli-
cated, a summation of possible numbers of m, my, ms and ms for each time order case is done.
The products are divided into the three types. The described product subtypes are represented
by pre-factors depending on the number of independent samples m, m1, ms and mg between the
times 71, T2, t; and to. They are given through the matrices P above. Therefore, equation (23)
becomes

1 o0
E{R; = — ; 01,0 012021)R 01,0 012022)R(0
{R}} M 1) mz::OPm(m,T) [(011022 + 012021 R(7) + (011021 + 012022) R(0)]

0 oo

m / { Z Z P (m1; —t)pm(ma; 7) [(Pai1 Pazs

mi1= O’I'TLQ 0

+Pa13Pa2n) R( t) + (Pa12Pa2s + Pai13Pa22) R(T — t) + Pa13Pa2sR(0)]} dt

T

2M+1 oNT L 102 /{ Z Pm(ma;t)pm(ma; T — t) (P11 Pras
0

mi1= Omg 0

+Pg13Pp21)R(t) + (Pp12PB23 + P13 Pp22) R(T — t) + Pp13PB23R(0)]} dt

{ Z Z Pm(m1; T)pm(mast — 1) [(Po11 Poes

:0m2 0

2M—|—12

ﬂ\

+Pci13Pe21)R(t) + (Pe12Poas + Po1sPoa2)R(t — ) + PoisPoas R(0)]} dt

2M+1 //{ Z Z Z Pm m17t2 )pm(mQQ_tQ)pm(mg,;T)

— 00 tl mi1= Omg 0m3 0

(Qa11Qa22 + Qa12Q A21) R(t2 — t1)]} dt2dtl

2M+1 //{ Z Z Z Pm(Mm1; —t1)pm (Ma; t2)pm (ms; 7 — t2)

—00 0 m1=0 ma= Omg 0

(@B11QB22 + @B12QB21)R(t2 — t1)]} dt2dtl

2M+1 //{Z > me m1; —t1)Pm (Ma; T)pm (M3 t2 — 7)

mq Omg 0m3 0

[(Qc11Q022 + Qc12Qc21) R(ta — t1)]} di2dtl

2M+1 //{Z Z me (m1;t1)pm(ma;ts — t1)pm(ms; T — ta)

m1=0mo= Omg 0

(@p11@p22 + @p12Q@p21) R(ta — t1)]} dt2dtl

10



2M+1 //{Z Z me (my;t)pm(ma; T — t1)pm (ma;ta — 7)

m1=0mao= Omg 0

[(QEHQEQQ + QE12Qp21)R(ty — t1)]} dt2dtl

2M+1 //{Z Z me m1;T)pm(me;ty — 7)pm(ms; bz — t1)

m1=0 ma=0 m3z=0

T t1
[(Qr11Qr22 + Qr12Qr21)R(t2 — t1)]} dt2dtl (35)
with the probability
aA)™
Pm(m, At) = ( m') e Al (36)

of m independent samples within the time interval At. Because of the certainty that no relation
exists over an interval with at least M samples, the summations can be reduced by using the
probability
Pm(m, At form < M
Pra(m, At) = { lm( Mf)l . B
—>ico Pm(i,At) form =M
instead and building the sum over 0 to M. The integrals in equation (35) are calculated nu-

merically with the time resolution A1 of the ACF through a substitution by sums. Therefore,
equation (35) becomes

(37)

M
1
E{R,} = M 11 > Pl (m; kAT) [(O1109 + 01501) Ry + (011051 + 012022) Ry
m=0
AT - -
(2M+1 )2 Z Z Z ViPp (M3 —iAT)py, (ma; KAT) [(Par1 Pass

i=—00 m1=0 ma=0

+Pa13Pa21)R_i + (Pa12Pass + Pa13Paz2)Ri—;i + Pai13PassRo]
E M M

nAT
(2M+1 )2 Z Z Z VP (M3 1AT)pp, (ma; (K — ) AT) [(Pp11 Ppas

=0 m1=0 ms=0
+Pgi13Ppo1)R; + (PB12P323 + Pgi3Ppo2)Ry—; + P13 PB23Ro)
At XX
(2M 1)z Z Z Z Vi (M3 KAT) P, (ma; (i — k)AT) [(Po11 Poas

i=k m1=0 my=0

+Pci13Pe21)Ri + (Pe12Poas + Poi1sPoa2) Ri—k + PoisPoas Ro)

nAT 0 0 M M M
+(2M+ 2 XX 3 3 vrphu(mis (= A7) (mai =i A7)

—o0 j=i m1=0 mo=0 m3=0

P (ma; KAT) [( QA11QA22 + QA12QA21) —i

< ;\;+1> Z Z Z Z Z VVV=Py, (M5 —IAT)py,, (M JAT)

i=—00 j=0 m1=0 mo=0 m3=0

pl,(ms; (k — J)AT) [(QBHQB22 + Q312QB21) i

2]7\;-{—1) Z Z Z Z Z vV V=P, (m1; —iIAT)p), (ma; KAT)

i=—00 j=k m1=0 mo=0 m3=0

D (ms; (7 — k)AT) [(Qc11Qc22 + Qc12Qc21) Rj—i]
E M

AAT 2 k M M
() TS S Y sl mesi8r)pma: (- 950

=0 j=i m1=0 m2=0 m3=0

+

+
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parameter unit, value
model - AR2
(yn = ¢1Yn—1 + P2Yn—_2 + an)

model parameters - ¢$1 =18, ¢ = —0.9
sampling frequency (primary series) | kHz 10

mean velocity ms~! 0.0
variance m?2s~2 0.3
observation time s 1000

mean data rate (secondary series) kHz 1.0

noise power m?s~2 0.0

velocity bias - no

Table 1: Simulation parameters for single realizations

P (ma; (k — j)AT) [(QDHQD22 + Qp12Qp21) R ]
AAT \ 2 e M
+\ 51 1) ;;m{:o m;] mgzovzv]v Pl (ma; iAT)pL, (ma; (k — i) AT)
P (m3; (5 — k)AT) [(QE11QE22 + QE12QE21) =
+ ﬂ’?f: 1>2 i]i M_O m;] gjo vivjv_pl, (my; kAT)PL, (ma: (i — k)AT)
Pra(m3; (5 — )AT) [(Qr11QF22 + Qr12QFa1) Rj—i] (38)

with the pre-factors

. 0.5 fori e [0;k]
ve = { 1 otherwise (39)
‘ 0.5 for j € [0; k]
Vi { 1 otherwise (40)
(05 fori=j
V== { 1 otherwise (41)

to minimize the edge artefacts.

The theoretic ACF of the simulation has been used to calculate the expectation of the ACF
from filtered (high pass and low pass) data sets. The ACF are transformed to the frequency
domain using the Fourier transform. Figure 6 shows the results of a computer simulation [3]. It
shows a good similarity of the calculated PSD expectation and the PSD estimation from filtered
data. The simulation parameters are listed in table 1. A single realization (reduced observation
time) of the simulated data set is shown in figure 5.

3.1.2 Constant Time

For the derivation of the ACF expectation E{R}} of filtered data sets the interaction of two
points 71 = k1 A7 and 12 = ko A7 (see figure 1a) is of interest. There are four basic time regimes
(see figure 7) depending on the time lag.

1. The time windows of 71 and 75 are non-overlapping (7 > 2B, figure 7a). There are m;
independent samples within the time window of 71 and ms independent samples within

12
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Figure 7: Time regimes for the symmetric filter with a constant time window

the time window of 5. The filtered samples are

1 —
Y, = _m1 1 <Uslxk1 + Vo Z xsl+i> (42)

i=1
1 =
with
vg1 = 1 , Vs =1 and v, =1 for the low pass
Vg1 =my , Uss =my and v, = —1 for the high pass

The samples within the sums are shifted by the indices s; and s respectively. They are
separated in that way that all samples are independent.

For the ACF expectation follows

E{R;c} = E{yklyk2} (44)
1 mi ma
= E VsiThy + Vo ) Tsi4i | | Vs2Thy + Vo ) Tsyyi
Rl (AR aoe | (AR v

Pm m112B pm(mQ,QB) mso
Z Z (my + 1)(my + 1) Us1Vs2Tky Tho T Vs1VoThy izzlwsrl-z

ma2
+Vs2V5 T, Z Tsy4i T 'U <Z xsl+z> <Z m32+i> } (45)
i=1

i=1

mi1= 0m2 0

with the probability p,,(m;At) of m independent samples within the interval At (equa-
tion 36). The m; and m» independent samples are equally distributed in the time interval
[11 — B;7 + B] and [1» — B; 7> + B] with the probability density T3 and £ respectively.

Therefore, from equation (45) follows

7+B
Pm(m1;2B)pp, (ma; 2B) Vst VoMM /
E{R} = R R(t)dt
{R}} ZO ZO it Dom £ 1) | el 5 ®)
m1=0mz e
7+ B B t+B
US2U i} /R + % mlm?/ /R (ty — 1) dty dty
—Br—B
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— ~= Pm(m1;2B)pn(ms;2B o(vs s
_ Z Z p ml; )Pm (M2 ) V1052 R(T) Vo (V1M + Vsamy)
(my + 1)(mgy + 1) 2B

mi1= O’I'TLQ 0

7+B 9 B 7+B
/R(t)dt+%/ /R(tg—tl)dtg dt, (46)
T—B —-Brt-B

. The time windows of 7 and 7 are overlapping particularly, x, is not a member of the
local group at 7 and vice versa (B < 7 < 2B, figure 7b). There are m; independent
samples within the interval [y — B; 7 — B], m» independent samples within the interval
[1 + B; 72 + B] and m,. independent samples within the interval [, — B;7 + B]. The
filtered samples are

1
i — s o s1+i o Se+i 47
(7 m1+mc+1<lek1+v Z$1+ +v Zx +> (47)

i=1 i=1
1 me
Yko e+ me + 1 <v32$k2 Vo 1:21 Tso+i T Vo 1:21 .’Esc+z> ( )
with
vg1 = 1 , Vs =1 and v, =1 for the low pass
Vg1 =My +me , Vs =mo+m, and v, =—1 for the high pass

The samples within the sums are shifted by the indices s1, so and s, respectively. They
are separated in that way that the samples of different sums are independent.

For the ACF expectation follows
E{R,} = E{ynyw} (49)

1 mi Mme
- F { (m1 +me +1)(ma + me + 1) <vsm“ + 00D Tk Z$+>

i=1 i=1
ma
V2T + v, E Tgo+i + v, E T +i

i=1 i=1

Z Z Z Pm( ml’ T)Pm (ma; T )pm(mC;QB_T)E{U 1Vs2%k, Tk
s S 1 2

(my +me+ 1)(ma +me + 1)

m1=0 ma=0m.=0

+ 051 Vo Tk, E Tgyti + Vs2UoThy E Ty 4i + Vo(Vs1Thy + Vs2Thy) E T ti
i=1 =1 =1

(Z 317S1+i> (Z $52+2> + v, (Z Tsy+i+ Z x32+l> (ZC: xscﬂ')
o2 (Z z+> (50)

The my, ms and m. independent samples are equally distributed in the time interval
[m — By — B], [ + B;m + B] and [1» — B; 71 + B] with the probability density =,

72 and 55 respectively. The products of the sums are independent, excepting the last

term. The square of the sum has to be written as

me me me
(Z xsc+i> Zx it szsc+2xsc+] (51)
i=1

i=1 j=1
i

V)

+v

o
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with the products z,, 4;%s,4; of independent samples.

Therefore, from equation (50) follows

pm my; T pm(m2a )pm(mc; 2B — T)
E{R,} =
m;(] m;O mZ;O ml e+ 1)(m2 T me + 1)
T+B T7+B
vava R(T) + = / R(t) dt + =22 / R(t) dt
B B
B B

2B — 1

_{.w / R(t)dt—{—w/]%(t)dt

2B —1
T—B T—B

T—BT1+B T—B B

Ulemg vim my
< ty —tp)dty dt e ty —tp)dty dt
+ o / / R(ty —t1) dty 1+7’(2B—7') / / R(ty —t1) dty dty

-B —-B 7—B
B 1+B
_V5memma_ / / R(ty — t1) dts dty + v2m.R(0)
QB—T
T—B B
1 B B
2ol MMe _ 1) g"(mc_ / /Rt2—t1)dt2dt1
7T—B1—B

vZme(me — 1) i
+ c c

(2B — 1)? /

B

i i i P (M5 T)Pr (M5 T)Py (M3 2B — 1)

(m1 +me+1)(m2 +me+ 1)

7+ B
vervspR(r) + Selvsma & Ve / R(t) dt
T
B
B 9 T—B71+B
W/R()MM/ /R(tQ_tl)dt2dt1
2B — 1 T2
T—B —-B B
7T—B B

2
+—vomc(m1 T / / R(ty — t1) dty dty + v)m:R(0)

7(2B — 1) o

—-B
B
/Rtg—tl ) dty dty (52)
B

T— T—

. The time windows of 7 and 7» are overlapping particularly, =, is a member of the local
group at 72 and vice versa (0 < 7 < B, figure 7c). There are m; independent samples within
the interval [y — B; 72 — B], ms independent samples within the interval [1; + B; 2 + B
and m, independent samples within the interval [ — B; 7 + B]. The filtered samples are

Yk

Yko

1 mi
T mitme+2 + + + 53
my + me + 2 (vﬂwkl YoTks T Vo Zz; Ls14i T Vo Zz; wsc+z> (53)

1 ma2
= ma + mg + 2 (voﬂfkl + Us2Tk, + Vo ZZ; Tsy+i T Vo ZZ; a:sc+,> (54)
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with

vg1 = 1 , Vg =1 and v, =1 for the low pass

v =mi1+me+1 |, vgo=mo+m.+1 and wv,=—1 for the high pass
The samples within the sums are shifted by the indices s1, so and s, respectively. They
are separated in that way that the samples of different sums are independent.

For the ACF expectation follows
E{R;c} = E{ykl yk2} (55)

1 “
= F { (vsla:kl + VoZpy + Vo szﬁi

(my 4+ me + 2)(ma + me + 2)

i=1
me ma2 me
+v, Z Ts.+i Vol + VUs2Tky + Vo Z Tspti T Vo Z Ts.+i
i=1 i=1 i=1

(my +me + 2)(ma + m. + 2)
m2

2 2
+0o (Vs1 %, + V2T, ) + Vo (Vs1 Tk, + VoThy) E Tpii + Vo(Vs2Th,
i=1

oo o0 oo
my;T mo; T me; 2B — 1
= Yy Y e Den e 2B <) g, 2
m1=0 ma=0m.=0

mi c
00Tk, ) D Torgi + 0o (Va1 + 00)Thy + (Va2 + V6)Ths) D Taopi
i=1 i=1

+U3 (21: x51+i> (Z x52+’> T (Z Tsy+i t szz+l> (ZC: xsc+i>
Z;j ) =1
> (Z $+> (56)
i=1

The my, mo and m. independent samples are equally distributed in the time interval
[r1 — B;79 — B, [11 + B; 72 + B] and [1» — B; 7y + B] with the probability density ™, ™2
and 55— respectively. The products of the sums are independent, excepting the last term.
The square of the sum has to be written like in equation (51) with products of independent
samples.

Therefore, from equation (56) follows

my;T pm(m2a )pm(mc;QB_T)

! _ pm
E{R,} = Z Z Z (my1 + me +1)(my + me + 1)

m1=0 ma2=0 m.=0

(V51052 + V2)R(T) + Vo (vs1 + vs2) R(0) + % / R(t) dt
B
9 B 7+ B T—B
4202 / R(t) dt + 222%™ / R(t) dt + 2o / R(t)dt
=
B—T1 B —B
volvs1 + vo)me [ volve2 + vo)me [
Vo(vs1 + Vo) Vg2 + Vp)Me
-B T—B
7T—BT1+B 7T—B B
U m1m2 v Mmemq
R(ty — t1) dty dt R(ty — t1) dty dt
/ / to 1) dto dty + (2B—7')/ / (t2 1) dt2 dty
—B B —B —B
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+B

/ RtQ_tl dtht1+U m R(O)
B

B

3

vimems
(2B —1)

g‘g\m

T

B

vmcmc—l

R(ty —t1)dto dt

t— QB—T // 2 1) 2 diy
7T—B1—B

- Z Z Z Pm (M1 T)pm (Ma; T)pm (me; 2B — 1)
m1=0 mo=0 m.=0 m1+m6+1)(m2+mc+1)

((vs1vs2 + V))R(T) + vo(vs1 + vs2 + vome) R(0)

T+B T—B
+v0(vslm2+v32m1) / ()dt+ vZ(my + ma) / R(t) dt
T T
-B
( B T—BT1+B
Vome(Vs1 + Vg2 + 20,) V2 Smima
t)dt ty — t1) dto dt
* 2B -1 /R T T2 / /R(2 1) bz dfy
7—B -B B
9 7—B B
v mc mq +m2
R(ty — t1) dto dt
+— 2B —7) / / 2 1) dta dtq
—-B r—B
B B
v2 2me(m. — 1)
el / / Rits — 1) dt> dty (57)
7T—B1—B

4. The time windows of 7 and 7o are overlapping completely. Nevertheless, using the slot-
correlation without selfproducts the times 71 and 75 and hence the corresponding samples
x, and zy, have a small deviation (7 = 0, figure 7d). The sample z, is a member of the
local group at 75 and vice versa. There are m, independent samples within the interval
[m — B =7 — B;71 + B=my+ B]. The filtered samples are

1 —
1 .
Yo = me + 2 (an:kl + VsTg, + Vo ; l‘scﬂ‘) (59)
with
vy =1 and v, =1 for the low pass

vs =me.+1 and wv, =—1 for the high pass
For the ACF expectation follows

E{R.} = E{yryr} (60)

1 s
El—+—+— )
{ (mc + 2)2 (stkl + VoTky + Vo ;xsc+2>
Me
(voa:kl + V5T, + Vo Z a:sc+i> }

i=1

pm(mc§ QB)

(mc + 2)2 E {('Ug + Ug)wklmkg + Uo'l)s(wzl + :I:%Z)

me=0
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2
Me Mme

+0,(vs + Vo) (T, + Thy) Zwsr_ﬂ' + 02 (Z wsﬁ_i) (61)
i=1

i=1

The m,. independent samples are equally distributed in the time interval [1; — B = 7 —

B;7 4+ B = 75 + B] with the probability density 7. The square of the sum has to be

written like in equation (51) with products of independent samples.

Therefore, from equation (61) follows

B
, . = pm(me;2B) 9 9 20, (Vs + Vo)
E{Rk} = ZO m (’Us + ’UO)R(O) + QUOUSR(O) + T R(t) dt
me= —B
2 ( 0 B B
vime(m, —
+vom R(0) + =2 2By / / R(ty — t1) dto dty
-B-B
(me:2B) 20gme(vs +v0) [
DPm\Me; 2 2 VoM (Vs + Vo
= s o c t)dt
T (((v +0,)? 4 0m) R(0) Tl L0
m.=0 —B
20 ( 1 B B
vime(me —
R(ta — t1) dto dt 62
+ 2B)? / / (ta — t1) dt2 dty (62)
-B-B
There are two types of integrals:
b by bo
/ R(t)dt  and / / Rlts — t1) dts dty (63)
a a1 ag
Presuming that b; > a; and by > ay the second integral can be calculated through
be
/ veR(t) dt (64)
Qe
with
a. = ax—"b (65)
be = by—am (66)
Ve = min(vy,;vs) (67)
Um = min(by —ag;by — as) (68)
vy = min(t — ac;be — t) (69)

Both can be calculated using numerical summation. Presuming that 7 and B and hence also a
and b have the temporal resolution A7 with b > a, by > a; and by > ag, the integrals can be
approximated through

b b/ AT
/ Ryt ~ A1 S waiR; (70)
J i=a/AT
b. be/AT
/ WRHd ~ At S upR; (71)
i=a. ) Ar

Qc
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Figure 8: The PSD of a simulated LDA data set, filtered symmetrically with a constant time
window

To minimize edge artefacts the pre-factors

o 1/2 fori € [a/AT;b/AT]
vAi = { 1 otherwise (72)
AT/8 for i € [a./AT;b./AT]
o vm — AT/8 for i € [(ac + vm)/AT; (be — vin)/AT] and (ac + vm) # (be — vim)
VB = Um — AT/4 for i € [(ac +vm)/AT; (be — i) /AT] and (ac + Vi) = (be — Vi)
vt otherwise
(73)

Further edge artefacts occure for 7 = B. This is the border between the time regimes 2
and 3. Using the slotcorrelation for the ACF estimation, both time regimes occure in this slot.
Therefore the contributions of both time regimes have to be calculated and averaged to a final
result. The other transitions are uncomplicated.

The theoretic ACF of the simulation has been used to calculate the expectation of the ACF
from filtered (high pass and low pass) data sets. The ACF are transformed to the frequency
domain using the Fourier transform. Figure 8 shows the results of the computer simulation. It
shows a good similarity of the calculated PSD expectation and the PSD estimation from filtered

data.
3.2 Asymmetric Filter
3.2.1 Constant Number of Samples

The derivation of the filter characteristic for asymmetric filtering with a constant number of
samples correspond to that of the symmetric filter with only one time case. Furthermore, the
number of independent samples between two points in time is not needed. The derivations are
similar for the high pass and the low pass. Only two different coefficients are necessary:

vg=1 and v,=1 for the low pass
vs =M and v, =—1 for the high pass

The filtered samples are

—1 M
1
Yi = oM +1 [sti + Vo E Tiyj + E Titj J (74)
j=—M j=1

20



To derive the expectation of R}, for a given time lag 7 = kA7 with the temporal resolution Ar
the filtered samples at two different points at the time 7, = k; A7 and 79 = k2 A7 (see figure 1b)
are of interest.

1 -1

Yoo = 37T | Vet v > whyy (75)
=M
1
o vl +vozwk2+g’ (76)
j=1

Because the samples in both sums are completely independent, for the expectation of the
ACF follows

E{R;} = E{ynyr} )
1 —1 M
e WE Us$k1 + Vo Z $k1+j 'Us.’L'k2 -+ Vo Z $k2+j
j=—M j=1
1 M 1
= WE v2 sTh1Thy T VsV, Z$k2+1 + VsV Ty Z Thy+j
Jj=1 j=—M

M —1
E Tko+j E : Tky+j
j=1 j=—M

= ﬁ v2R(T) + 2v,0, /pg(t)R(T +t)dt
. 0
+v’ //pg (t1)pg(t2)R(T + t1 + t2) dis dtl} (78)
0 0
with the probability density
n fort=20
pe(t) = { D S (tZ)ie—th otherwise (79)

of the presence of a sample at the time ¢ away from 7; or 75 and being a member of the
corresponding local group.

The integrals have to be calculated numerically with the time resolution A7 of the ACF.
Equation (78) becomes

E{R;} = ﬁ ngk+2vsvoAT§;vipg(iAT)Rk+i
v2(AT)? iivlvjpg (IAT)pg (JAT) Risyit (80)
i=0 j=0
with the pre-factors
Vi = { (1)-5 gﬁlérjvige (81)
= {07 G =)
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Figure 9: The PSD of a simulated LDA data set, filtered asymmetrically with a constant number
of samples

to reduce the edge artefacts.

An important advantage of this filter type is the linearity of the transformation from the true
ACF R to the expected ACF of the filtered data set R'. Therefore, the equation (80) has to be
calculated only once for k = 0 leading to a discrete filter vector fj. The expectation of the ACF
for the filtered data becomes

E{R}} = f * Ry (83)
with the convolution operator x.

The theoretic ACF of the simulation has been used to calculate the expectation of the ACF
from filtered (high pass and low pass) data sets. The ACF are transformed to the frequency
domain using the Fourier transform. Figure 9 shows the results of the computer simulation. It

shows a good similarity of the calculated PSD expectation and the PSD estimation from filtered
data.

3.2.2 Constant Time

The derivation of the filter characteristic for asymmetric filtering with a constant time window
correspond to that of the symmetric filter with only one time regime. For the derivation of
the ACF expectation E{Rj } of filtered data sets the interaction of two points 7 = kAT and
7o = ko AT (see figure 1b) is of interest.

The time windows of 7, and 75 are non-overlapping. There are m; independent samples
within the time window of 71 and ms independent samples within the time window of 75. The
filtered samples are

1 —
Yk, = P (Uslxkl + v, ; $k1i> (84)
1 e
Yk, = m Vs2Zk, + Vo ; Thgti (85)
with
ve1 = 1 , Vg =1 and v, =1 for the low pass
Vg1 =My , Usy=ms and v, =—1 for the high pass

The samples within the sums are independent.
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For the ACF expectation follows

E{R.} = E{yryr} (86)
1 mi ma
= B s 1 T Vo § 1—1 s 2 T Vo E o+1
{(ml +D)(ms + 1) (v H TR 2 T ) (v #ka T 0o 2 That >}

ma2
_ pm ml; pm(mQaB)
= E E E S 05100, Thy + Vs1V0Tk, E Thoti

m1+1 m2+1)

m1=0 m2=0 i=1
mi ma

V5200, Z Thy—i TV, (Z Thy— z) (Z $k2+z‘> } (87)
i=1 i=1

with the probability p,,(m; At) of m independent samples within the interval At (equation 36).
The m; and m, independent samples are equally distributed in the time interval [r; — B; 1] and
[T2; T2 + B] with the probability density “g- and “g respectively.

Therefore, from equation (87) follows

B
mm; m 1 ;B Vs1VpMm
E{R;} = Z Z P (m 1+1pm( +21)) ’Usl’UsQR(T)-F%/R(T-Ft) dt
mi1= Omg 0 1 2 0
B
+%/R(T+t)dt+vmlm2 // (T +to — t) dts dty

—B 0

pm my; B)pm(ma; B) Vo (Vs1ma + vsamy)
E § R
(my + 1)(ms + 1) (”31”32 (r) + B

mi1= Omg 0

2B
1) o112

/RT-I-t)dt-l— i /(B—\B—t\)R(T+t)dt (88)
0
The integrals can be calculated using numerical summation. Presuming that 7 and B has
the temporal resolution A7 with B > 0 the integrals can be approximated through

B B/AT
/R(T+t) dt ~ AT Y waR (89)
0 i=0
2B 2B/AT
/(B —[B—t)R(r+t)dt ~ Ar Y vpiR; (90)
0 i=0
To minimize edge artefacts the pre-factors
o 1/2 for i € [0; B/AT]
vai = { 1 otherwise (91)
AT/8 for i € [0/AT;2B/AT]
v = B—ATt/4 for i = B/AT
— |B —iAT| otherwise
(92)

are used.
This filter can also be described as a linear transform from the true ACF R to the expected
ACF of the filtered data set R'. Therefore, the equation (88) has to be calculated only once for
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Figure 10: The PSD of a simulated LDA data set, filtered asymmetrically with a constant time
window

k = 0 leading to a discrete filter vector fi. The expectation of the ACF for the filtered data
becomes

E{R}} = fx * Ry (93)

with the convolution operator x.
The theoretic ACF of the simulation has been used to calculate the expectation of the ACF
from filtered (high pass and low pass) data sets. The ACF are transformed to the frequency
domain using the Fourier transform. Figure 10 shows the results of the computer simulation. It

shows a good similarity of the calculated PSD expectation and the PSD estimation from filtered
data.

4 Filter Correction

4.1 Symmetric Filter

The expectation of the ACF calculated from the filtered data E{R'} (equations 38, 46, 52, 57
and 62) are linear functions of the true ACF R. The sums can be sorted by the arguments of
the true ACF. That leads to a matrix F' that transforms the true ACF into the expectation of
the ACF calculated from the filtered data.

E{R'} = FR (94)

The inverse matrix F~! can be used to calculate a modified ACF R* from the ACF R’
estimated from measured and filtered data.

R*=F 'R (95)

The modified ACF is corrected for systematic errors connected to the filter.

The theoretic ACF of the simulation has been used to calculate the expectation of the ACF
from filtered (constant number of samples and constant time window, high pass and low pass)
data sets. The ACF are transformed to the frequency domain using the Fourier transform.
Figure 11 shows the results of the computer simulation. It shows a good similarity of the
corrected PSD from filtered data and the theoretic PSD derived from the simulation parameters.

4.2 Asymmetric Filter

Like described in section 3.2.1 and section 3.2.2 the asymmetric filters can be written as a linear
transform from the true ACF R to the expected ACF of the filtered data set R'. Therefore, the
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equation (88) has to be calculated only once for k = 0 leading to a discrete filter vector fi. The
expectation of the ACF for the filtered data becomes

E{R.} = fi * Ry, (96)

with the convolution operator x.
An inverse Filter and hence a modified ACF estimation R* with corrected filter errors can
be found from the filter coefficients by the discrete and implicite deconvolution

K—k—-1

1
B =4 (Rz— > ijZH) (97)
i=1

with the maximum time lag (K — 1)A7. Because of the use of Ry ; for the derivation of R} the
calculation has to start with the maximum time lag Ry _;.

The theoretic ACF of the simulation has been used to calculate the expectation of the ACF
from filtered (constant number of samples and constant time window, high pass and low pass)
data sets. The ACF are transformed to the frequency domain using the Fourier transform.
Figure 12 shows the results of the computer simulation. It shows a good similarity of the
corrected PSD from filtered data and the theoretic PSD derived from the simulation parameters.
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parameter unit, value
number of realizations - 1000
model - AR2

(Yn = G1Yn—1 + G2Yn—2 + an)
model parameters - ¢$1 = 1.8, ¢ = —0.9
sampling frequency (primary series) | kHz 10
mean velocity ms~! 0.0
variance m?2s~2 0.3
observation time s 10
mean data rate (secondary series) kHz 1.0
noise power m?s~2 0.0
velocity bias - no
harmonic amplitude ms~! 0.0/1.0
harmonic frequency Hz 1.0

Table 2: Simulation parameters for statistical investigations
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Figure 13: Simulated LDA data set with periodic component

5 Statistical Investigations

To get information about the expectation and the variability of ACF and PSD estimators with
filter and correction techniques a series of 1000 realizations of LDA data sets were simulated
(table 2). To simulate the usual task of LDA data filtering, additionally to the normal data sets
(figure 5) another type of data was generated by adding a harmonic component of given frequency
and amplitude and randomly chosen phase (figure 13). The 1000 series of each type were
processed by the different filter types (section 2) and corrected in the described way (section 4).
The ACF of each data set was transformed into the PSD using the Fourier transform. The sets
of PSDs were analysed statistically. For each data and filter type the expectation was estimated
through the mean PSD and the variability through the estimation’s variance.

Figure 14 shows the results for the symmetric filters (high pass and low pass; constant
number of samples and constant time window) without a periodic component. Figure 15 shows
the corresponding results for the data sets with the periodic component and figures 16 and 17
the results for the asymmetric filters.

For the data sets without a periodic component (figures 14 and 16) the systematic errors of
the data filtering can be corrected completely for all filter types. But the estimation’s variability
is larger than the variability of the procedure without any filter. Therefore, it doesn’t make
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sense to use the filtering technique for data sets without significant power in the non-interesting
low-frequency range.

For the data sets with a periodic component (figures 15 and 17) the systematic errors of
the data filtering can be corrected only for the high pass filters. The estimates using the low
pass filters are completely wrong. The course of that effect is the high power in large time
scales that was not used in the derivation of the filter characteristics. The high pass filters
don’t show this effect, because they suppress just this frequency range. Furthermore, it can be
seen that the variability of estimation is reduced for the high pass filters, but only for higher
frequencies. The low frequencies are suppressed by the filters hence the coefficients for the
filter correction are heavy in this range. This is more distinct for the symmetric filters because
they suppress the power in the low-frequency range more heavy than the asymmetric filters.
Therefore, the correction coefficients are more heavy for the symmetric filters and hence the
variability is higher, especially for low frequencies. That makes the asymmetric high pass filtering
with the corresponding correction preferable for this problematic type of LDA data. Besides,
the derivation of the filter characteristics and the correction is significantly more simple for this
filter type and the LN as well as the FST can be used to reduce the estimation’s variability once
more.

6 Recommendations

The filtering technique should be used only in the case of significant power in a non-interesting
frequency range. To separate the high frequency part an asymmetric high pass filter should be
used with the corresponding correction. It is equal whether a constant number of samples or a
constant time window has been used. The ACF should be calculated with the slot correlation
without self products. The asymmetric filtering with it’s correction can be combined with the
FST and the LN to reduce the estimation’s variability.

The filtering techniques should not be used without an adequate correction because of sys-
tematic errors, even in the case of symmetric filtering with large numbers of samples or large
time windows to calculate the local mean (figure 18).

To calculate the statistics of the low frequency range a reduced temporal resolution can be
used. There are no aliasing errors (figure 19). Note that the variability of the spectral estimate
is proportional to the number of slots and the time step A7. A reduced temporal resolution with
the same number of slots leads to an increased variability (figure 20). Furthermore, this leads to
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an increased (to the power of two) number of calculations. Therefore it is necessary to reduce

the number of samples.

The low pass filters should not be used for this.

Without a filter correction there is a

systematic error in the ACF or PSD of the filtered data (figure 21). It is not an aliasing error,
but it is a complex dependence of the result on the true data statistics and the filter. The use
of the low pass filters together with their correction leads to completely wrong results in the
presence of a periodicity with a low frequency (figures 15 and 17). Furthermore, these filters do

not lead to a reduced data set.
An averaging filter with

1 Mi

tavi = 7 Z tj
J=M(i—1)+1
1 Mi

Yyavi = i Z Z;
J=M(i—1)+1

(98)

(99)

should never be used to reduce the number of data samples in an LDA data set, because of
systematic errors (figure 22). Furthermore, the sampling statistics of the filtered data set is not
LDA data like. That leads to problems with the slot correlation.
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A solution of that problem is the downsampling. For each original data sample an independent
random number is taken from the interval [0;1). Only these samples are written to the new data
set where this random number is less than 1/M. That leads to a reduced number of samples
but some information are lost like with a reduced data rate. The variability of following ACF
estimations is increased (figure 23). But the new data set has an LDA conform sampling statistic,
there are no problems with the slot correlation, even not with the FST or the LN, and there is
the possibility of cascading several downsampling filters to expand the frequency range repeated.

7 Summery

The characteristics of LDA data filtering techniques, especially of the filter described in [§],
could be derived. The systematic errors of this technique could be predicted and removed
successfully. New, asymmetric filters were developed which lead to better results together with
easier prediction and correction expressions. The proof could be furnished that the asymmetric
high pass filtering and the corresponding correction are useful to reduce the variability of ACF
or PSD estimations in the presence of a significant periodic component with a low frequency. For
the statistical estimations with lower temporal resolution a bias free procedure was developed to
reduce the number of data samples and hence the computational expenditure.

8 Postscriptum

In connection with investigations how processor delays influence the results of ACF and PSD
estimations using the new filter algorithms the refined expression for the probability density
(equation 79)

0 n fort=0 (100)
DPyg - n Zf\io_l ((t_(it})tO)h)l 6_(t_(i+1)t0)h otherwise
was used with respect to the processor delay ty. It presumes that a group of ¢ samples needs at
least an interarrival time of (i 4+ 1)to between the preceding and the following sample. Because of
the limited number of samples within a given time interval an additional norm factor is necessary
in the case of using a constant time window (equations 36 and 86-88).

(n(At—(m+1)tg))™

_ m! €
pm(m, At) = S~ B2760] AT, —a(At—(i+1)t0)

=0 i!

—a(At—(m+1)to)

(101)
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Figure 24: Prediction of the PSD of an asymmetricly filtered data set with processor delay a)
with a constant number of samples and b) with a constant time window
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Figure 25: Mean of the corrected PSD of an asymmetricly filtered data set with processor delay
a) with a constant number of samples and b) with a constant time window

The prediction of the PSD of a filtered data set (figure 24) shows a good correspondence with
the estimation.

Figures 25 and 26 show the mean and the variance of the PSD estimation using the correction
method. The corrected estimation has no significant deviations to the simulation excepting the
lowest frequencies, where the estimation variance is very large.

This is a basic problem of the filter and correction algorithms. The aim of the filtering
technique is to reduce the power in the low frequency range yielding to deviations. The aim of
the correction algorithm is to correct these deviations yielding to a higher estimation variability.
The combination of both algorithms brings out a better result compared to the unfiltered data
only if the filter constants (M or B) are chosen in that way that the final variability becomes
smaller. While the lowest frequencies of the PSD are not that important, the procedures are
quite robust. But the estimation of ACF is very sensitive to the low frequency range of the PSD.
The PSD in figure 25 yield to significant deviations with large scales in the ACF (figure 27).
Note that this is not an effect of the processor delay, but it is a basic problem of the filter and
correction technique.

The conclusions from these results are:

e The new filter and correction technique can be used to reduce the variability of the PSD
estimation in the high frequency range for LDA data sets with a periodicity of significant
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Figure 26: Variance of the corrected PSD of an asymmetricly filtered data set with processor
delay a) with a constant number of samples and b) with a constant time window
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Figure 27: Mean of the corrected ACF of an asymmetricly filtered data set with processor delay
a) with a constant number of samples and b) with a constant time window
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Figure 28: ACF estimation a) with unfiltered data and b) with large filter constants

power.

e For the estimation of the ACF the algorithm should not be used because of possible devi-
ations with large scales. In that case the unfiltered data set (figure 28a) or a symmetric
filter with large filter constants without a correction (figure 28b) should be prefered. The
visible bend corresponds directly to the large scale periodicity.
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