
LDA Data FilteringHolger NobahSeptember 13, 1999AbstratThe LDA tehnique is widely used in the study of turbulent �ow �elds. The two mostimportant statistial funtions with information about the �uid dynamis are the autoorre-lation funtion (ACF) and the power spetral density (PSD). The tehniques for alulatingthe ACF or the PSD of an LDA data set are sophistiated. Nevertheless, the omputationbeomes di�ult for a dominating low-frequeny periodiity while the interesting frequenyrange lies muh higher. This report ompares �lter tehniques statistially, derives orre-tion algorithms for systemati deviations and investigates their usefulness. In the end areommendation is given how to handle this kind of data set to avoid systemati errors witha minimum of estimation's variability.1 IntrodutionThe LDA tehnique is widely used in the study of turbulent �ow �elds. Two important statistialfuntions with information about the �uid dynamis are the autoorrelation funtion (ACF) andthe power spetral density (PSD). The tehniques for alulating the ACF or the PSD of anLDA data set are sophistiated [2, 4℄. The ACF and the PSD orrespond through the Fouriertransform, hene they ontain the same information. Therefore, estimators for ACF or PSD anbe ompared by transforming one of these into the other. It is nearly the same whih domain isused for the omparison. Even the statistis (mean and variane) are omparable in time domainas well as in frequeny domain through the linearity of the Fourier transform. Nevertheless, theomputation beomes di�ult for a dominating low-frequeny periodiity, while the interestingfrequeny range lies muh higher, i.e. the investigation of miro-turbulene within yli �ow�elds.In [8℄ a �ltering tehnique is used to redue the estimation's variability. But it an beused to isolate the interesting high-frequeny part of the spetrum ontaining the informationabout miro-sale turbulene as well. Unfortunately, the results in [8℄ have a onstant value forfrequenies below a harateristi ut-o� frequeny depending on the �lter size. The desriptionof the used �lter suggests that the PSD should disappear for lower frequenies. That e�et wasnot explained ontentedly.Furthermore, the ACF/PSD of the �ltered data are hanged through the �lter in a hara-teristi way. That leads to a systemati error in the ACF/PSD estimation. It an be seen in[8℄ very learly for the strong high pass �lter with (n=1). Therefore, the authors judged this�lter to be not suitable. But this in�uene does not appear for �lters with higher order, only theharateristi ut-o� frequeny is shifted and the errors beome aeptable for a given frequenyrange.The spei� harateristi of the pre-�lter tehnique is ompletely di�erent to that of the�partile rate �lter� for LDA data reonstrution, i.e. for the sample-and-hold reonstrution[1℄. Therefore, the results of the pre-�ltering tehnique are more realisti, espeially for highfrequenies. Nevertheless, an estimation of the systemati deviations would be usefull to judgethe reliability of the results and to design a orretion �lter similar to the proedure given in [7℄.1



Beause of the non-regularly sampling the �ltering of LDA data is non-linear. Therefore,a desription of the system using an impulse response is not suitable. That exlude all known�ltering tehniques for equidistant sampled data sets, like onvolution of orrelation funtions orspetral ampli�ation. A possible desription of non-linear systems, the estimation of statistialfuntions and their re�nement is given in [7℄ where this tehnique was applied to the sample-and-hold reonstrution suessfully.2 Filtering Tehniques2.1 Symmetri Filter2.1.1 Constant Number of SamplesThe �rst �lter is similar to that in [8℄. The original LDA data samples xi = x(ti) at sampletimes ti are averaged to a loal mean �i�i = 12M + 1 MXj=�M xi+j (1)with a �xed number of samples M , on either side. The sample yHPi = y(ti) of the high pass(HP) �ltered series is found by yHPi = xi � �i (2)leading to an LDA data series with the same sampling sheme like the original data set. Fur-thermore, the loal mean is used as the orresponding low pass (LP) signal.yLPi = �i (3)The Fuzzy Slotting Tehnique (FST) [6℄Rk = PNi=1PNj=1 fk(tj � ti)yiyjPNi=1PNj=1 fk(tj � ti) (4)fk(�) = � 1� �� ��� � k�� for �� ��� � k�� < 10 otherwise (5)with the total number of samples N is used to estimate the ACF of the data set. The LoalNormalization (LN) [9, 5℄ and the Merged Tehnique [4℄ are not used beause of the the moredi�ult derivation of the �lter harateristi. Figure 6 shows the �lter e�et on the PSD for asimulated data set.2.1.2 Constant TimeThe seond �lter uses all original samples within an onstant time window [ti �B; ti + B℄ witha given maximum delay B, symmetri to the time ti of the sample xi. The loal mean is giventhrough �i = PNj=1 b(tj � ti)xjPNj=1 b(tj � ti) (6)with the top head window funtionb(�t) = � 1 for j�tj � B0 otherwise (7)2



6 6overlapping area�1 �2symmetri �lter 6 6autoorrelationa)
6�1bakward �lter 6 ross orrelationb)

6�2 foreward �lter?Figure 1: Filter sheme a) symmetri �lter; b) asymmetri �lter using the ross orrelationand the total number of samplesN in the data set. Therefore, the expressionPNj=1 b(tj�ti) givesthe number of samples within the interval. The relative ompliated mathematial desriptionof this �lter does not re�et the possibility of an algorithmi implementation orretly. Usingthe slot orrelation a time limited data bu�er already exists. Therefore, all routines of the slotorrelation an be used for the �ltering as well. The �ltered samples yHPi and yLPi are de�nedsimilar to the �lter using a onstant number of samples (setion 2.1.1). Figure 8 shows the �ltere�et on the PSD for a simulated data set.2.2 Asymmetri FilterThe mathematial desription of the �lter harateristis and the derivation of the expeted ACFof the �ltered data set (setion 3) beomes muh more easy for asymmetrial �ltering. In oppositto the symmetri �lters, the asymmetri �lters use only samples before or after the proesseddata sample for the alulation of the loal mean (�gure 1b). For a onstant number of samplesthe loal mean beomes �Fi = 1M + 1 MXj=0 xi+j (8)�Bi = 1M + 1 0Xj=�M xi+j (9)with the indies F refering to the foreward �lter and B refering to the bakward �lter. Note,that the bakward �lter is ausal (exepting j = 0) and the foreward �lter is non-ausal. For aonstant time window the loal mean beomes�Fi = PN�1j=i b(tj � ti)xjPN�1j=i b(tj � ti) (10)�Bi = Pij=0 b(tj � ti)xjPij=0 b(tj � ti) (11)respetively. The �ltered samples yHPi and yLPi are de�ned similar to the �lter using thesymmetri �lter (setion 2.1).To obtain a relatively easy desription of the �lter harateristis, the overlapping of �lterintervals during the onvolution should be prevent (�gure 1a). Therefore, instead of the ACF,the ross orrelation funtion (CCF) of the foreward and the bakward �ltered data is used.3



Only time lags of the CCF with non-overlapping �lter intervals are taken as the ACF estimation(�gure 1b).There are four advantages of the asymmetri �lters:1. a relatively simple mathematial desription of the �lter harateristis,2. the �lter harateristis funtion beomes linear (for the ACF, not for the time funtion),3. a non-disappearing low-frequeny PSD in the high pass path,4. there are no modi�ations neessary for the LN.The �rst two points lead to a redued number of alulations. That makes an easy implemen-tation of the algorithm in real appliations possible. The third point looks like a disadvantagein the �rst view, but if the power in the low frequeny range is not suppressed ompletely theorretion oe�ients in the inverted �lter matrix (see setion 4) beome not as heavy as forthe symmetri �lter and the orreted estimation beomes more reliable (espeially the ACFestimation). With the fourth point the Merged Tehnique, ombining the FST and the LNRk = q�̂2yF �̂2yBPNi=1PNj=1 fk(tj � ti)yBiyFjr�PNi=1PNj=1 fk(tj � ti)y2Bi��PNi=1PNj=1 fk(tj � ti)y2Fj� (12)fk(�) = � 1� �� ��� � k�� for �� ��� � k�� < 10 otherwise (13)�̂2yF = 1N � 1 NXi=1 (yFi � �yF)2 (14)�̂2yB = 1N � 1 NXi=1 (yBi � �yB)2 (15)�yF = 1N NXi=1 yFi (16)�yB = 1N NXi=1 yBi (17)an be used to alulate the CCF/ACF. Figures 9 and 10 show the �lter e�et on the PSD fora simulated data set using an asymmetri �lter with a onstant number of samples and with aonstant time window respetively.3 Filter Charateristis3.1 Symmetri Filter3.1.1 Constant Number of SamplesThe �lter harateristi an be desribed through the expetation of the ACF R0 using the�ltered data in terms of the original ACF R (see [7℄). The derivations are similar for the highpass and the low pass. Only two di�erent oe�ients are neessary:vs = 1 and vo = 1 for the low passvs = 2M and vo = �1 for the high pass4



The �ltered samples areyi = 12M + 1 24vsxi + vo0� �1Xj=�M xi+j + MXj=1 xi+j1A35 (18)To derive the expetation of R0k for a given time lag � = k�� with the temporal resolution ��the �ltered samples at two di�erent points in time �1 = k1�� and �2 = k2�� (see �gure 1a) areof interest. yk1 = 12M + 1 24vsxk1 + vo0� �1Xj=�M xk1+j + MXj=1 xk1+j1A35 (19)yk2 = 12M + 1 24vsxk2 + vo0� �1Xj=�M xk2+j + MXj=1 xk2+j1A35 (20)For the expetation of the ACF followsEfR0kg = Efyk1yk2g (21)Before the derivation of this expression a look at the probabilities of the di�erent samples isneessary:1. The produt of the �ltered samples yk1 and yk2 in�uenes the result of the �nal ACFestimation only under the ondition that the samples at the two time lags �1 and �2 arepresent. Therefore, the probability of presene is 1 for these samples.2. The presene of the other samples at given times have a probability density ps(t) = _ndepending on the data rate _n. Note, that the integral of this probability density is notequal to 1 beause several samples an our within a time interval. The samples areindependent and non-numerated, they an be exhanged without an in�uene to the results(beomes important later).Therefore, the produts of every two samples have di�erent joint probabilities:1. The produt xk1xk2 of the both samples at the time lags �1 and �2 have the joint probability1.(a) Presuming that xk1 is not a member of the sample group that builds the loal meanat �2 and vie versa the sum of yk1 ontains only xk1 and yk2 ontains only xk2 ofsample type 1. The produt yk1yk2 ontains only v2sxk1xk2 of produt type 1.(b) If xk1 is a member of this loal group for �2 and vie versa then both sums ontainboth samples. The produt yk1yk2 ontain (vsxk1 + voxk2)(voxk1 + vsxk2 ) = (v2s +v2o)xk1xk2 + vsvo(x2k1 + x2k2).2. The produts xk1xj with j 6= k1 and xk2xj with j 6= k2 of one sample at �1 or �2 andanother sample at the time t (t 62 [�1; �2℄) have the joint probability _n.(a) Presuming that xj is a member of the loal group at �1 and not a member of theloal group at �2 and xk1 is not a member of the loal group at �2 and vie versa thesum of yk1 ontains only xj and yk2 ontains only xk2 of sample types building theprodut type 2. The produt yk1yk2 ontains only vsvoxjxk2 of produt type 2.(b) Presuming that xj is a member of the loal group at �2 and not a member of theloal group at �1 and xk1 is not a member of the loal group at �2 and vie versa thesum of yk1 ontains only xk1 and yk2 ontains only xj of sample types building theprodut type 2. The produt yk1yk2 ontains only vsvoxjxk1 of produt type 2.5



() Presuming that xj is a member of the loal group at �1 and a member of the loalgroup at �2 and xk1 is not a member of the loal group at �2 and vie versa the sumof yk1 ontains xk1 and xj and yk2 ontains xk2 and xj of sample types building theprodut type 2. The produt yk1yk2 ontains only vsvoxj(xk1 +xk2)+v2ox2j of produttype 2. The self produt of xj is also of type 2, beause if the sample exists also theprodut exists.(d) Presuming that xj is a member of the loal group at �1 and not a member of the loalgroup at �2 and xk1 is a member of the loal group at �2 and vie versa the sum of yk1ontains only xj and yk2 ontains xk1 and xk2 of sample types building the produttype 2. The produt yk1yk2 ontains voxj(voxk1 + vsxk2) of produt type 2.(e) Presuming that xj is a member of the loal group at �2 and not a member of the loalgroup at �1 and xk1 is a member of the loal group at �2 and vie versa the sum of yk1ontains xk1 and xk2 and yk2 ontains only xj of sample types building the produttype 2. The produt yk1yk2 ontains voxj(vsxk1 + voxk2) of produt type 2.(f) Presuming that xj is a member of the loal group at �1 and a member of the loalgroup at �2 and xk1 is a member of the loal group at �2 and vie versa the sums ofyk1 and yk2 ontains xk1 , xk2 and xj of sample types building the produt type 2.The produt yk1yk2 ontains voxj(vs + vo)(xk1 + xk2) + v2ox2j of produt type 2.3. The produts xixj with i; j 62 [k1; k2℄ of two samples at ti and tj (ti; tj 62 [�1; �2℄) havethe joint probability _n2. Beause the samples are independent, it an be presumed thatti < tj . With �1 < �2 the following four subases are left.(a) If xi is a member of the loal group at �1 and not a member of the loal group at �2and xj is a member of the loal group at �2 and not a member of the loal group at �1then the sum of yk1 ontains only xi and the sum of yk2 ontains only xj of samplesbuilding a produt of type 3. The produt yk1yk2 ontains only v2oxixj of type 3.(b) If xi is a member of the loal group at �1 and not a member of the loal group at �2and xj is a member of the loal group at �2 and a member of the loal group at �1then the sum of yk1 ontains xi and xj and the sum of yk2 ontains only xj of samplesbuilding a produt of type 3. The produt yk1yk2 ontains only v2oxixj of type 3.() If xi is a member of the loal group at �1 and a member of the loal group at �2 andxj is a member of the loal group at �2 and not a member of the loal group at �1then the sum of yk1 ontains only xi and the sum of yk2 ontains xi and xj of samplesbuilding a produt of type 3. The produt yk1yk2 ontains only v2oxixj of type 3.(d) If xi and xj are members of both loal groups at �1 and �2 then the sum of yk1 andyk2 ontain xi and xj of samples building a produt of type 3. The produt yk1yk2ontains 2v2oxixj of type 3.Now equation (21) an be solved. It followsEfR0kg = Efyk1yk2g = Efy(�1)y(�2)g= 1(2M + 1)2 �p1aEfv2sx(�1)x(�2)g+ p1bEf(vsx(�1) + vox(�2))(vox(�1) + vsx(�2))g+ 1Z�1 ps(t) [p2a(t)Efvsvox(t)x(�2)g+ p2b(t)Efvsvox(t)x(�1)g+ p2(t)Efvsvox(t)(x(�1) + x(�2)) + v2ox2(t)g+ p2d(t)Efvox(t)(vox(�1) + vsx(�2))g+ p2e(t)Efvox(t)(vsx(�1) + vox(�2))g+ p2f(t)Efvox(t)(vs + vo)(x(�1) + x(�2)) + v2ox2(t)g� dt6



�1 �26 6mFigure 2: Time and sample ase for produt type 1+ 1Z�1 1Zt1 ps(t1)ps(t2)(p3a(t1; t2) + p3b(t1; t2) + p3(t1; t2)+2p3d(t1; t2))Efv2ox(t1)x(t2)g dt2dt1	 (22)= 1(2M + 1)2 �p1av2sR(�) + p1b((v2s + v2o)R(�) + 2vsvoR(0))+ 1Z�1 ps(t) [p2a(t)vsvoR(� � t) + p2b(t)vsvoR(�t) + p2(t)(vsvo(R(�t)+R(� � t)) + v2oR(0)) + p2d(t)(v2oR(�t) + vsvoR(� � t)) + p2e(t)(vsvoR(�t)+v2oR(� � t)) + p2f(t)(vo(vs + vo)(R(�t) +R(� � t)) + v2oR(0))� dt+ 1Z�1 1Zt1 ps(t1)ps(t2)(p3a(t1; t2) + p3b(t1; t2) + p3(t1; t2)+2p3d(t1; t2))v2oR(t2 � t1) dt2dt1	 (23)with the probability density ps(t) of the existene of a sample at the time t and the probabilitypxy of the ases desribed above. The integration way of the seond integral in the doubleintegral is a result of the independent (non-numbered) samples in the data set. Note, that pxydepends on the order of �1, �2, t or t1 and t2 respetively and on the number of samples betweenthese points in time.For the produt types (1, 2 and 3) there are di�erent ases for the membership of �1, �2 andt or t1 and t2 respetively to the loal groups at �1 and �2.1. produt type 1: There are m samples between �1 and �2 (�gure 2). The sample at �1 isa member of the loal group at �2 and via versa if m < M . This an be written like amatrix O = � vs vovp(m < M)vovp(m <M) vs � (24)with the binary funtion vp(x) = � 1 if x is true0 otherwise (25)giving the ontribution of xk1 (�rst olumn) and xk2 (seond olumn) to the loal groupof �1 (�rst raw) and �2 (seond raw). The produts O11O21, O11O22, O12O21 and O12O22are of type 1.2. produt type 2:(a) The sample time t lies before �1. There are m1 samples between t and �1 and m2samples between �1 and �2 (�gure 3a). The sample at t is a member of the loalgroup at �1 if m1 < M . The sample at t is a member of the loal group at �2if m1 + m2 < M � 1. Note, that the sample at �1 is also a member in this ase.Therefore, the number of independent samples between t and �2 must be less than7



6 6m1 m1m2 m2t t�1 �1�2 �2b) )6 66 66m1t �1 �2a) 6 6m2 Figure 3: Time and sample ase for produt type 2M � 1. The sample at �1 is a member of the loal group at �2 and via versa ifm2 < M . This an be written like a matrixPA = � vs vovp(m2 < M) vovp(m1 < M)vovp(m2 < M) vs vovp(m1 +m2 < M � 1) � (26)giving the ontribution of xk1 (�rst olumn), xk2 (seond olumn) and xj (thirdolumn) to the loal group of �1 (�rst raw) and �2 (seond raw). The produtsP11P23, P12P23, P13P21, P13P22 and P13P23 are of type 2.(b) The sample time t lies between �1 and �2. There are m1 samples between �1 and tand m2 samples between t and �2 (�gure 3b). The sample at t is a member of theloal group at �1 if m1 < M . The sample at t is a member of the loal group at �2if m2 < M . The sample at �1 is a member of the loal group at �2 and via versa ifm1+m2 < M � 1. Note, that the sample at t is also a member of both groups in thisase. Therefore, the number of independent samples between �1 and �2 must be lessthan M � 1. This an be written like a matrixPB = � vs vovp(m1 +m2 < M � 1) vovp(m1 < M)vovp(m1 +m2 < M � 1) vs vovp(m2 < M) �(27)() The sample time t lies after �2. There are m1 samples between �1 and �2 and m2samples between �2 and t (�gure 3). The sample at t is a member of the loal group at�2 ifm2 < M . The sample at t is a member of the loal group at �1 ifm1+m2 < M�1.Note, that the sample at �2 is also a member in this ase. Therefore, the number ofindependent samples between �1 and t must be less than M � 1. The sample at �1 isa member of the loal group at �2 and via versa if m1 < M . This an be written likea matrixPC = � vs vovp(m1 < M) vovp(m1 +m2 < M � 1)vovp(m1 < M) vs vovp(m2 < M) � (28)3. produt type 3:(a) The sample times t1 and t2 lie before �1. There are m1 samples between t1 and t2,m2 samples between t2 and �1 and m3 samples between �1 and �2 (�gure 4a). Thesample at t1 is a member of the loal group at �1 if m1 +m2 < M � 1. The sampleat t2 is a member of the loal group at �1 if m2 < M . The sample at t1 is a memberof the loal group at �2 if m1 +m2 +m3 < M � 2. The sample at t2 is a member ofthe loal group at �2 if m2 +m3 < M � 1. The sample at �1 is a member of the loalgroup at �2 and via versa if m3 < M . This an be written like a matrixQA = � vovp(m1 +m2 < M � 1) vovp(m2 < M)vovp(m1 +m2 +m3 < M � 2) vovp(m2 +m3 < M � 1) � (29)giving the ontribution of x(t1) (�rst olumn) and x(t2) (seond olumn) to the loalgroup of �1 (�rst raw) and �2 (seond raw). The samples at �1 and �2 do not have aontribution of produt type 3. Only the produts Q11Q22 and Q12Q21 are of type 3.8



(b) The sample time t1 lies before �1 and t2 lies between �1 and �2. There are m1 samplesbetween t1 and �1, m2 samples between �1 and t2 and m3 samples between t2 and�2 (�gure 4b). The sample at t1 is a member of the loal group at �1 if m1 < M .The sample at t2 is a member of the loal group at �1 if m2 < M . The sample at t1is a member of the loal group at �2 if m1 +m2 +m3 < M � 2. The sample at t2is a member of the loal group at �2 if m3 < M . The sample at �1 is a member ofthe loal group at �2 and via versa if m2 +m3 < M � 1. This an be written like amatrix QB = � vovp(m1 < M) vovp(m2 < M)vovp(m1 +m2 +m3 < M � 2) vovp(m3 < M) � (30)() The sample time t1 lies before �1 and t2 lies after �2. There arem1 samples between t1and �1, m2 samples between �1 and �2 and m3 samples between �2 and t2 (�gure 4).The sample at t1 is a member of the loal group at �1 if m1 < M . The sample att2 is a member of the loal group at �1 if m2 +m3 < M � 1. The sample at t1 is amember of the loal group at �2 if m1 +m2 < M � 1. The sample at t2 is a memberof the loal group at �2 if m3 < M . The sample at �1 is a member of the loal groupat �2 and via versa if m2 < M . This an be written like a matrixQC = � vovp(m1 < M) vovp(m2 +m3 < M � 1)vovp(m1 +m2 < M � 1) vovp(m3 < M) � (31)(d) The sample times t1 and t2 lie between �1 and �2. There are m1 samples between �1and t1, m2 samples between t1 and t2 and m3 samples between t2 and �2 (�gure 4d).The sample at t1 is a member of the loal group at �1 if m1 < M . The sample att2 is a member of the loal group at �1 if m1 +m2 < M � 1. The sample at t1 is amember of the loal group at �2 if m2 +m3 < M � 1. The sample at t2 is a memberof the loal group at �2 if m3 < M . The sample at �1 is a member of the loal groupat �2 and via versa if m1 +m2 +m3 < M � 2. This an be written like a matrixQD = � vovp(m1 < M) vovp(m1 +m2 < M � 1)vovp(m2 +m3 < M � 1) vovp(m3 < M) � (32)(e) The sample time t1 lies between �1 and �2 and t2 lies after �2. There are m1 samplesbetween �1 and t1, m2 samples between t1 and �2 and m3 samples between �2 and t2(�gure 4e). The sample at t1 is a member of the loal group at �1 if m1 < M . Thesample at t2 is a member of the loal group at �1 if m1 +m2 +m3 < M � 2. Thesample at t1 is a member of the loal group at �2 if m2 < M . The sample at t2 is amember of the loal group at �2 if m3 < M . The sample at �1 is a member of theloal group at �2 and via versa if m1 + m2 < M � 1. This an be written like amatrix QE = � vovp(m1 < M) vovp(m1 +m2 +m3 < M � 2)vovp(m2 < M) vovp(m3 < M) � (33)(f) The sample times t1 and t2 lie after �2. There are m1 samples between �1 and �2, m2samples between �2 and t1 and m3 samples between t1 and t2 (�gure 4f). The sampleat t1 is a member of the loal group at �1 if m1 +m2 < M � 1. The sample at t2 isa member of the loal group at �1 if m1 +m2 +m3 < M � 2. The sample at t1 isa member of the loal group at �2 if m2 < M . The sample at t2 is a member of theloal group at �2 if m2 +m3 < M � 1. The sample at �1 is a member of the loalgroup at �2 and via versa if m1 < M . This an be written like a matrixQF = � vovp(m1 +m2 < M � 1) vovp(m1 +m2 +m3 < M � 2)vovp(m2 < M) vovp(m2 +m3 < M � 1) � (34)9
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6 6m1 m2 m3t1 t2�1 �2d) 66 m3m2m1 t2t1 �2�1e) 66m3m2m1 t2t1�2�1f)6 6 6 66 66 6 6 66 6Figure 4: Time and sample ase for produt type 3To make the joint probabilities of the several time order and produt ases not too ompli-ated, a summation of possible numbers of m, m1, m2 and m3 for eah time order ase is done.The produts are divided into the three types. The desribed produt subtypes are representedby pre-fators depending on the number of independent samples m, m1, m2 and m3 between thetimes �1, �2, t1 and t2. They are given through the matries P above. Therefore, equation (23)beomesEfR0kg = 1(2M + 1)2 1Xm=0 pm(m; �) [(O11O22 +O12O21)R(�) + (O11O21 +O12O22)R(0)℄+ _n(2M + 1)2 0Z�1 ( 1Xm1=0 1Xm2=0 pm(m1;�t)pm(m2; �) [(PA11PA23+PA13PA21)R(�t) + (PA12PA23 + PA13PA22)R(� � t) + PA13PA23R(0)℄g dt+ _n(2M + 1)2 �Z0 ( 1Xm1=0 1Xm2=0 pm(m1; t)pm(m2; � � t) [(PB11PB23+PB13PB21)R(t) + (PB12PB23 + PB13PB22)R(� � t) + PB13PB23R(0)℄g dt+ _n(2M + 1)2 1Z� ( 1Xm1=0 1Xm2=0 pm(m1; �)pm(m2; t� �) [(PC11PC23+PC13PC21)R(t) + (PC12PC23 + PC13PC22)R(t� �) + PC13PC23R(0)℄g dt+ _n2(2M + 1)2 0Z�1 0Zt1 ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1; t2 � t1)pm(m2;�t2)pm(m3; �)[(QA11QA22 +QA12QA21)R(t2 � t1)℄g dt2 dt1+ _n2(2M + 1)2 0Z�1 �Z0 ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1;�t1)pm(m2; t2)pm(m3; � � t2)[(QB11QB22 +QB12QB21)R(t2 � t1)℄g dt2 dt1+ _n2(2M + 1)2 0Z�1 1Z� ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1;�t1)pm(m2; �)pm(m3; t2 � �)[(QC11QC22 +QC12QC21)R(t2 � t1)℄g dt2 dt1+ _n2(2M + 1)2 �Z0 �Zt1 ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1; t1)pm(m2; t2 � t1)pm(m3; � � t2)[(QD11QD22 +QD12QD21)R(t2 � t1)℄g dt2 dt110



+ _n2(2M + 1)2 �Z0 1Z� ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1; t1)pm(m2; � � t1)pm(m3; t2 � �)[(QE11QE22 +QE12QE21)R(t2 � t1)℄g dt2 dt1+ _n2(2M + 1)2 1Z� 1Zt1 ( 1Xm1=0 1Xm2=0 1Xm3=0 pm(m1; �)pm(m2; t1 � �)pm(m3; t2 � t1)[(QF11QF22 +QF12QF21)R(t2 � t1)℄g dt2 dt1 (35)with the probability pm(m;�t) = ( _n�t)mm! e� _n�t (36)of m independent samples within the time interval �t. Beause of the ertainty that no relationexists over an interval with at least M samples, the summations an be redued by using theprobability p0m(m;�t) = � pm(m;�t) for m <M1�PM�1i=0 pm(i;�t) for m =M (37)instead and building the sum over 0 to M . The integrals in equation (35) are alulated nu-merially with the time resolution �� of the ACF through a substitution by sums. Therefore,equation (35) beomesEfR0kg = 1(2M + 1)2 MXm=0 p0m(m; k��) [(O11O22 +O12O21)Rk + (O11O21 +O12O22)R0℄+ _n��(2M + 1)2 0Xi=�1 MXm1=0 MXm2=0 vip0m(m1;�i��)p0m(m2; k��) [(PA11PA23+PA13PA21)R�i + (PA12PA23 + PA13PA22)Rk�i + PA13PA23R0℄+ _n��(2M + 1)2 kXi=0 MXm1=0 MXm2=0 vip0m(m1; i��)p0m(m2; (k � i)��) [(PB11PB23+PB13PB21)Ri + (PB12PB23 + PB13PB22)Rk�i + PB13PB23R0℄+ _n��(2M + 1)2 1Xi=k MXm1=0 MXm2=0 vip0m(m1; k��)p0m(m2; (i� k)��) [(PC11PC23+PC13PC21)Ri + (PC12PC23 + PC13PC22)Ri�k + PC13PC23R0℄+� _n��2M + 1�2 0Xi=�1 0Xj=i MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1; (j � i)��)p0m(m2;�j��)p0m(m3; k��) [(QA11QA22 +QA12QA21)Rj�i℄+� _n��2M + 1�2 0Xi=�1 kXj=0 MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1;�i��)p0m(m2; j��)p0m(m3; (k � j)��) [(QB11QB22 +QB12QB21)Rj�i℄+� _n��2M + 1�2 0Xi=�1 1Xj=k MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1;�i��)p0m(m2; k��)p0m(m3; (j � k)��) [(QC11QC22 +QC12QC21)Rj�i℄+� _n��2M + 1�2 kXi=0 kXj=i MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1; i��)p0m(m2; (j � i)��)11



parameter unit valuemodel � AR2(yn = �1yn�1 + �2yn�2 + an)model parameters � �1 = 1:8, �2 = �0:9sampling frequeny (primary series) kHz 10mean veloity ms�1 0.0variane m2s�2 0.3observation time s 1 000mean data rate (seondary series) kHz 1.0noise power m2s�2 0.0veloity bias � noTable 1: Simulation parameters for single realizationsp0m(m3; (k � j)��) [(QD11QD22 +QD12QD21)Rj�i℄+� _n��2M + 1�2 kXi=0 1Xj=k MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1; i��)p0m(m2; (k � i)��)p0m(m3; (j � k)��) [(QE11QE22 +QE12QE21)Rj�i℄+� _n��2M + 1�2 1Xi=k 1Xj=i MXm1=0 MXm2=0 MXm3=0 vivjv=p0m(m1; k��)p0m(m2; (i� k)��)p0m(m3; (j � i)��) [(QF11QF22 +QF12QF21)Rj�i℄ (38)with the pre-fators vi = � 0:5 for i 2 [0; k℄1 otherwise (39)vj = � 0:5 for j 2 [0; k℄1 otherwise (40)v= = � 0:5 for i = j1 otherwise (41)to minimize the edge artefats.The theoreti ACF of the simulation has been used to alulate the expetation of the ACFfrom �ltered (high pass and low pass) data sets. The ACF are transformed to the frequenydomain using the Fourier transform. Figure 6 shows the results of a omputer simulation [3℄. Itshows a good similarity of the alulated PSD expetation and the PSD estimation from �ltereddata. The simulation parameters are listed in table 1. A single realization (redued observationtime) of the simulated data set is shown in �gure 5.3.1.2 Constant TimeFor the derivation of the ACF expetation EfR0kg of �ltered data sets the interation of twopoints �1 = k1�� and �2 = k2�� (see �gure 1a) is of interest. There are four basi time regimes(see �gure 7) depending on the time lag.1. The time windows of �1 and �2 are non-overlapping (� � 2B, �gure 7a). There are m1independent samples within the time window of �1 and m2 independent samples within12



Figure 5: Simulated LDA data set

Figure 6: The PSD of a simulated LDA data set, �ltered symmetrially with a onstant numberof samples ompared to the PSD of the un�ltered data set (FST and LN)
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�2 +B�2 +B�1 +BFigure 7: Time regimes for the symmetri �lter with a onstant time windowthe time window of �2. The �ltered samples areyk1 = 1m1 + 1  vs1xk1 + vo m1Xi=1 xs1+i! (42)yk2 = 1m2 + 1  vs2xk2 + vo m2Xi=1 xs2+i! (43)with vs1 = 1 ; vs2 = 1 and vo = 1 for the low passvs1 = m1 ; vs2 = m2 and vo = �1 for the high passThe samples within the sums are shifted by the indies s1 and s2 respetively. They areseparated in that way that all samples are independent.For the ACF expetation followsEfR0kg = Efyk1yk2g (44)= E( 1(m1 + 1)(m2 + 1)  vs1xk1 + vo m1Xi=1 xs1+i! vs2xk2 + vo m2Xi=1 xs2+i!)= 1Xm1=0 1Xm2=0 pm(m1; 2B)pm(m2; 2B)(m1 + 1)(m2 + 1) E(vs1vs2xk1xk2 + vs1voxk1 m2Xi=1 xs2+i+vs2voxk2 m1Xi=1 xs1+i + v2o  m1Xi=1 xs1+i! m2Xi=1 xs2+i!) (45)with the probability pm(m; �t) of m independent samples within the interval �t (equa-tion 36). The m1 and m2 independent samples are equally distributed in the time interval[�1 �B; �1 +B℄ and [�2 �B; �2 +B℄ with the probability density m12B and m22B respetively.Therefore, from equation (45) followsEfR0kg = 1Xm1=0 1Xm2=0 pm(m1; 2B)pm(m2; 2B)(m1 + 1)(m2 + 1) 0�vs1vs2R(�) + vs1vom22B �+BZ��B R(t) dt+vs2vom12B �+BZ��B R(t) dt+ v2om1m24B2 BZ�B �+BZ��B R(t2 � t1) dt2 dt11A14



= 1Xm1=0 1Xm2=0 pm(m1; 2B)pm(m2; 2B)(m1 + 1)(m2 + 1) �vs1vs2R(�) + vo(vs1m2 + vs2m1)2B�+BZ��B R(t) dt+ v2om1m24B2 BZ�B �+BZ��B R(t2 � t1) dt2 dt11A (46)2. The time windows of �1 and �2 are overlapping partiularly, xk1 is not a member of theloal group at �2 and vie versa (B < � < 2B, �gure 7b). There are m1 independentsamples within the interval [�1 � B; �2 � B℄, m2 independent samples within the interval[�1 + B; �2 + B℄ and m independent samples within the interval [�2 � B; �1 + B℄. The�ltered samples areyk1 = 1m1 +m + 1  vs1xk1 + vo m1Xi=1 xs1+i + vo mXi=1 xs+i! (47)yk2 = 1m2 +m + 1  vs2xk2 + vo m2Xi=1 xs2+i + vo mXi=1 xs+i! (48)with vs1 = 1 ; vs2 = 1 and vo = 1 for the low passvs1 = m1 +m ; vs2 = m2 +m and vo = �1 for the high passThe samples within the sums are shifted by the indies s1, s2 and s respetively. Theyare separated in that way that the samples of di�erent sums are independent.For the ACF expetation followsEfR0kg = Efyk1yk2g (49)= E( 1(m1 +m + 1)(m2 +m + 1)  vs1xk1 + vo m1Xi=1 xs1+i + vo mXi=1 xs+i! vs2xk2 + vo m2Xi=1 xs2+i + vo mXi=1 xs+i!)= 1Xm1=0 1Xm2=0 1Xm=0 pm(m1; �)pm(m2; �)pm(m; 2B � �)(m1 +m + 1)(m2 +m + 1) E fvs1vs2xk1xk2+vs1voxk1 m2Xi=1 xs2+i + vs2voxk2 m1Xi=1 xs1+i + vo(vs1xk1 + vs2xk2 ) mXi=1 xs+i+v2o  m1Xi=1 xs1+i! m2Xi=1 xs2+i!+ v2o  m1Xi=1 xs1+i + m2Xi=1 xs2+i! mXi=1 xs+i!+v2o  mXi=1 xs+i!29=; (50)The m1, m2 and m independent samples are equally distributed in the time interval[�1 � B; �2 � B℄, [�1 + B; �2 + B℄ and [�2 � B; �1 + B℄ with the probability density m1� ,m2� and m2B�� respetively. The produts of the sums are independent, exepting the lastterm. The square of the sum has to be written as mXi=1 xs+i!2 = mXi=1 x2s+i + mXi=1 mXj=1j 6=i xs+ixs+j (51)15



with the produts xs+ixs+j of independent samples.Therefore, from equation (50) followsEfR0kg = 1Xm1=0 1Xm2=0 1Xm=0 pm(m1; �)pm(m2; �)pm(m; 2B � �)(m1 +m + 1)(m2 +m + 1)0�vs1vs2R(�) + vs1vom2� �+BZB R(t) dt+ vs2vom1� �+BZB R(t) dt+vs1vom2B � � BZ��B R(t) dt+ vs2vom2B � � BZ��B R(t) dt+v2om1m2�2 ��BZ�B �+BZB R(t2 � t1) dt2 dt1 + v2omm1�(2B � �) ��BZ�B BZ��B R(t2 � t1) dt2 dt1+ v2omm2�(2B � �) BZ��B �+BZB R(t2 � t1) dt2 dt1 + v2omR(0)+v2om(m � 1)(2B � �)2 BZ��B BZ��B R(t2 � t1) dt2 dt11A= 1Xm1=0 1Xm2=0 1Xm=0 pm(m1; �)pm(m2; �)pm(m; 2B � �)(m1 +m + 1)(m2 +m + 1)0�vs1vs2R(�) + vo(vs1m2 + vs2m1)� �+BZB R(t) dt+vom(vs1 + vs2)2B � � BZ��B R(t) dt+ v2om1m2�2 ��BZ�B �+BZB R(t2 � t1) dt2 dt1+v2om(m1 +m2)�(2B � �) ��BZ�B BZ��B R(t2 � t1) dt2 dt1 + v2omR(0)+v2om(m � 1)(2B � �)2 BZ��B BZ��B R(t2 � t1) dt2 dt11A (52)3. The time windows of �1 and �2 are overlapping partiularly, xk1 is a member of the loalgroup at �2 and vie versa (0 < � � B, �gure 7). There arem1 independent samples withinthe interval [�1 �B; �2 �B℄, m2 independent samples within the interval [�1 + B; �2 + B℄and m independent samples within the interval [�2 �B; �1 +B℄. The �ltered samples areyk1 = 1m1 +m + 2  vs1xk1 + voxk2 + vo m1Xi=1 xs1+i + vo mXi=1 xs+i! (53)yk2 = 1m2 +m + 2  voxk1 + vs2xk2 + vo m2Xi=1 xs2+i + vo mXi=1 xs+i! (54)16



with vs1 = 1 ; vs2 = 1 and vo = 1 for the low passvs1 = m1 +m + 1 ; vs2 = m2 +m + 1 and vo = �1 for the high passThe samples within the sums are shifted by the indies s1, s2 and s respetively. Theyare separated in that way that the samples of di�erent sums are independent.For the ACF expetation followsEfR0kg = Efyk1yk2g (55)= E( 1(m1 +m + 2)(m2 +m + 2)  vs1xk1 + voxk2 + vo m1Xi=1 xs1+i+vo mXi=1 xs+i! voxk1 + vs2xk2 + vo m2Xi=1 xs2+i + vo mXi=1 xs+i!)= 1Xm1=0 1Xm2=0 1Xm=0 pm(m1; �)pm(m2; �)pm(m; 2B � �)(m1 +m + 2)(m2 +m + 2) E �(vs1vs2 + v2o)xk1xk2+vo(vs1x2k1 + vs2x2k2) + vo(vs1xk1 + voxk2) m2Xi=1 xs2+i + vo(vs2xk2+voxk1) m1Xi=1 xs1+i + vo((vs1 + vo)xk1 + (vs2 + vo)xk2 ) mXi=1 xs+i+v2o  m1Xi=1 xs1+i! m2Xi=1 xs2+i!+ v2o  m1Xi=1 xs1+i + m2Xi=1 xs2+i! mXi=1 xs+i!+v2o  mXi=1 xs+i!29=; (56)The m1, m2 and m independent samples are equally distributed in the time interval[�1 �B; �2 �B℄, [�1 +B; �2 +B℄ and [�2 �B; �1 +B℄ with the probability density m1� , m2�and m2B�� respetively. The produts of the sums are independent, exepting the last term.The square of the sum has to be written like in equation (51) with produts of independentsamples.Therefore, from equation (56) followsEfR0kg = 1Xm1=0 1Xm2=0 1Xm=0 pm(m1; �)pm(m2; �)pm(m; 2B � �)(m1 +m + 1)(m2 +m + 1)0�(vs1vs2 + v2o)R(�) + vo(vs1 + vs2)R(0) + vs1vom2� �+BZB R(t) dt+v2om2� BZB�� R(t) dt+ vs2vom1� �+BZB R(t) dt+ v2om1� ��BZ�B R(t) dt+vo(vs1 + vo)m2B � � BZ��B R(t) dt+ vo(vs2 + vo)m2B � � BZ��B R(t) dt+v2om1m2�2 ��BZ�B �+BZB R(t2 � t1) dt2 dt1 + v2omm1�(2B � �) ��BZ�B BZ��B R(t2 � t1) dt2 dt117



+ v2omm2�(2B � �) BZ��B �+BZB R(t2 � t1) dt2 dt1 + v2omR(0)+v2om(m � 1)(2B � �)2 BZ��B BZ��B R(t2 � t1) dt2 dt11A= 1Xm1=0 1Xm2=0 1Xm=0 pm(m1; �)pm(m2; �)pm(m; 2B � �)(m1 +m + 1)(m2 +m + 1)�(vs1vs2 + v2o)R(�) + vo(vs1 + vs2 + vom)R(0)+vo(vs1m2 + vs2m1)� �+BZB R(t) dt+ v2o(m1 +m2)� ��BZ�B R(t) dt+vom(vs1 + vs2 + 2vo)2B � � BZ��B R(t) dt+ v2om1m2�2 ��BZ�B �+BZB R(t2 � t1) dt2 dt1+v2om(m1 +m2)�(2B � �) ��BZ�B BZ��B R(t2 � t1) dt2 dt1+v2om(m � 1)(2B � �)2 BZ��B BZ��B R(t2 � t1) dt2 dt11A (57)4. The time windows of �1 and �2 are overlapping ompletely. Nevertheless, using the slot-orrelation without selfproduts the times �1 and �2 and hene the orresponding samplesxk1 and xk2 have a small deviation (� = 0, �gure 7d). The sample xk1 is a member of theloal group at �2 and vie versa. There are m independent samples within the interval[�1 �B = �2 �B; �1 +B = �2 +B℄. The �ltered samples areyk1 = 1m + 2  vsxk1 + voxk2 + vo mXi=1 xs+i! (58)yk2 = 1m + 2  voxk1 + vsxk2 + vo mXi=1 xs+i! (59)with vs = 1 and vo = 1 for the low passvs = m + 1 and vo = �1 for the high passFor the ACF expetation followsEfR0kg = Efyk1yk2g (60)= E( 1(m + 2)2  vsxk1 + voxk2 + vo mXi=1 xs+i! voxk1 + vsxk2 + vo mXi=1 xs+i!)= 1Xm=0 pm(m; 2B)(m + 2)2 E �(v2s + v2o)xk1xk2 + vovs(x2k1 + x2k2)18



+vo(vs + vo)(xk1 + xk2) mXi=1 xs+i + v2o  mXi=1 xs+i!29=; (61)The m independent samples are equally distributed in the time interval [�1 � B = �2 �B; �1 + B = �2 + B℄ with the probability density m2B . The square of the sum has to bewritten like in equation (51) with produts of independent samples.Therefore, from equation (61) followsEfR0kg = 1Xm=0 pm(m; 2B)(m + 1)2 0�(v2s + v2o)R(0) + 2vovsR(0) + 2vo(vs + vo)m2B BZ�B R(t) dt+v2omR(0) + v2om(m � 1)(2B)2 BZ�B BZ�B R(t2 � t1) dt2 dt11A= 1Xm=0 pm(m; 2B)(m + 1)2 0�((vs + vo)2 + v2om)R(0) + 2vom(vs + vo)2B BZ�B R(t) dt+v2om(m � 1)(2B)2 BZ�B BZ�B R(t2 � t1) dt2 dt11A (62)There are two types of integrals:bZa R(t) dt and b1Za1 b2Za2 R(t2 � t1) dt2 dt1 (63)Presuming that b1 > a1 and b2 > a2 the seond integral an be alulated throughbZa vR(t) dt (64)with a = a2 � b1 (65)b = b2 � a1 (66)v = min(vm; vt) (67)vm = min(b1 � a1; b2 � a2) (68)vt = min(t� a; b � t) (69)Both an be alulated using numerial summation. Presuming that � and B and hene also aand b have the temporal resolution �� with b > a, b1 > a1 and b2 > a2, the integrals an beapproximated through bZa R(t) dt � �� b=��Xi=a=�� vAiRjij (70)bZa vR(t) dt � �� b=��Xi=a=�� vBiRjij (71)19



Figure 8: The PSD of a simulated LDA data set, �ltered symmetrially with a onstant timewindowTo minimize edge artefats the pre-fatorsvAi = � 1=2 for i 2 [a=�� ; b=�� ℄1 otherwise (72)vBi = 8>><>>: ��=8 for i 2 [a=�� ; b=�� ℄vm ���=8 for i 2 [(a + vm)=�� ; (b � vm)=�� ℄ and (a + vm) 6= (b � vm)vm ���=4 for i 2 [(a + vm)=�� ; (b � vm)=�� ℄ and (a + vm) = (b � vm)vt otherwise (73)Further edge artefats oure for � = B. This is the border between the time regimes 2and 3. Using the slotorrelation for the ACF estimation, both time regimes oure in this slot.Therefore the ontributions of both time regimes have to be alulated and averaged to a �nalresult. The other transitions are unompliated.The theoreti ACF of the simulation has been used to alulate the expetation of the ACFfrom �ltered (high pass and low pass) data sets. The ACF are transformed to the frequenydomain using the Fourier transform. Figure 8 shows the results of the omputer simulation. Itshows a good similarity of the alulated PSD expetation and the PSD estimation from �ltereddata.3.2 Asymmetri Filter3.2.1 Constant Number of SamplesThe derivation of the �lter harateristi for asymmetri �ltering with a onstant number ofsamples orrespond to that of the symmetri �lter with only one time ase. Furthermore, thenumber of independent samples between two points in time is not needed. The derivations aresimilar for the high pass and the low pass. Only two di�erent oe�ients are neessary:vs = 1 and vo = 1 for the low passvs =M and vo = �1 for the high passThe �ltered samples areyi = 12M + 1 24vsxi + vo0� �1Xj=�M xi+j + MXj=1 xi+j1A35 (74)20



To derive the expetation of R0k for a given time lag � = k�� with the temporal resolution ��the �ltered samples at two di�erent points at the time �1 = k1�� and �2 = k2�� (see �gure 1b)are of interest. yk1 = 1M + 1 0�vsxk1 + vo �1Xj=�M xk1+j1A (75)yk2 = 1M + 1 0�vsxk2 + vo MXj=1 xk2+j1A (76)Beause the samples in both sums are ompletely independent, for the expetation of theACF followsEfR0kg = Efyk1yk2g (77)= 1(M + 1)2E8<:0�vsxk1 + vo �1Xj=�M xk1+j1A0�vsxk2 + vo MXj=1 xk2+j1A9=;= 1(M + 1)2E8<:v2sxk1xk2 + vsvoxk1 MXj=1 xk2+j + vsvoxk2 �1Xj=�M xk1+j+v2o0� MXj=1 xk2+j1A0� �1Xj=�M xk1+j1A9=;= 1(M + 1)2 24v2sR(�) + 2vsvo 1Z0 pg(t)R(� + t) dt+v2o 1Z0 1Z0 pg(t1)pg(t2)R(� + t1 + t2) dt2 dt135 (78)with the probability densitypg(t) = ( _n for t = 0_nPM�1i=0 (t _n)ii! e�t _n otherwise (79)of the presene of a sample at the time t away from �1 or �2 and being a member of theorresponding loal group.The integrals have to be alulated numerially with the time resolution �� of the ACF.Equation (78) beomesEfR0kg = 1(M + 1)2 "v2sRk + 2vsvo�� 1Xi=0 vipg(i��)Rk+i+v2o(��)2 1Xi=0 1Xj=0 vivjpg(i��)pg(j��)Rk+i+j35 (80)with the pre-fators vi = � 0:5 for i = 01 otherwise (81)vj = � 0:5 for j = 01 otherwise (82)21



Figure 9: The PSD of a simulated LDA data set, �ltered asymmetrially with a onstant numberof samplesto redue the edge artefats.An important advantage of this �lter type is the linearity of the transformation from the trueACF R to the expeted ACF of the �ltered data set R0. Therefore, the equation (80) has to bealulated only one for k = 0 leading to a disrete �lter vetor fk. The expetation of the ACFfor the �ltered data beomes EfR0kg = fk �Rk (83)with the onvolution operator �.The theoreti ACF of the simulation has been used to alulate the expetation of the ACFfrom �ltered (high pass and low pass) data sets. The ACF are transformed to the frequenydomain using the Fourier transform. Figure 9 shows the results of the omputer simulation. Itshows a good similarity of the alulated PSD expetation and the PSD estimation from �ltereddata.3.2.2 Constant TimeThe derivation of the �lter harateristi for asymmetri �ltering with a onstant time windoworrespond to that of the symmetri �lter with only one time regime. For the derivation ofthe ACF expetation EfR0kg of �ltered data sets the interation of two points �1 = k1�� and�2 = k2�� (see �gure 1b) is of interest.The time windows of �1 and �2 are non-overlapping. There are m1 independent sampleswithin the time window of �1 and m2 independent samples within the time window of �2. The�ltered samples are yk1 = 1m1 + 1  vs1xk1 + vo m1Xi=1 xk1�i! (84)yk2 = 1m2 + 1  vs2xk2 + vo m2Xi=1 xk2+i! (85)with vs1 = 1 ; vs2 = 1 and vo = 1 for the low passvs1 = m1 ; vs2 = m2 and vo = �1 for the high passThe samples within the sums are independent.22



For the ACF expetation followsEfR0kg = Efyk1yk2g (86)= E( 1(m1 + 1)(m2 + 1)  vs1xk1 + vo m1Xi=1 xk1�i! vs2xk2 + vo m2Xi=1 xk2+i!)= 1Xm1=0 1Xm2=0 pm(m1;B)pm(m2;B)(m1 + 1)(m2 + 1) E(vs1vs2xk1xk2 + vs1voxk1 m2Xi=1 xk2+i+vs2voxk2 m1Xi=1 xk1�i + v2o  m1Xi=1 xk1�i! m2Xi=1 xk2+i!) (87)with the probability pm(m; �t) of m independent samples within the interval �t (equation 36).The m1 and m2 independent samples are equally distributed in the time interval [�1�B; �1℄ and[�2; �2 +B℄ with the probability density m1B and m2B respetively.Therefore, from equation (87) followsEfR0kg = 1Xm1=0 1Xm2=0 pm(m1;B)pm(m2;B)(m1 + 1)(m2 + 1) 0�vs1vs2R(�) + vs1vom2B BZ0 R(� + t) dt+vs2vom1B BZ0 R(� + t) dt+ v2om1m2B2 0Z�B BZ0 R(� + t2 � t1) dt2 dt11A= 1Xm1=0 1Xm2=0 pm(m1;B)pm(m2;B)(m1 + 1)(m2 + 1) �vs1vs2R(�) + vo(vs1m2 + vs2m1)BBZ0 R(� + t) dt+ v2om1m2B2 2BZ0 (B � jB � tj)R(� + t) dt1A (88)The integrals an be alulated using numerial summation. Presuming that � and B hasthe temporal resolution �� with B > 0 the integrals an be approximated throughBZ0 R(� + t) dt � �� B=��Xi=0 vAiRi (89)2BZ0 (B � jB � tj)R(� + t) dt � �� 2B=��Xi=0 vBiRi (90)To minimize edge artefats the pre-fatorsvAi = � 1=2 for i 2 [0;B=�� ℄1 otherwise (91)vBi = 8<: ��=8 for i 2 [0=�� ; 2B=�� ℄B ���=4 for i = B=��B � jB � i�� j otherwise (92)are used.This �lter an also be desribed as a linear transform from the true ACF R to the expetedACF of the �ltered data set R0. Therefore, the equation (88) has to be alulated only one for23



Figure 10: The PSD of a simulated LDA data set, �ltered asymmetrially with a onstant timewindowk = 0 leading to a disrete �lter vetor fk. The expetation of the ACF for the �ltered databeomes EfR0kg = fk �Rk (93)with the onvolution operator �.The theoreti ACF of the simulation has been used to alulate the expetation of the ACFfrom �ltered (high pass and low pass) data sets. The ACF are transformed to the frequenydomain using the Fourier transform. Figure 10 shows the results of the omputer simulation. Itshows a good similarity of the alulated PSD expetation and the PSD estimation from �ltereddata.4 Filter Corretion4.1 Symmetri FilterThe expetation of the ACF alulated from the �ltered data EfR0g (equations 38, 46, 52, 57and 62) are linear funtions of the true ACF R. The sums an be sorted by the arguments ofthe true ACF. That leads to a matrix F that transforms the true ACF into the expetation ofthe ACF alulated from the �ltered data.EfR0g = FR (94)The inverse matrix F�1 an be used to alulate a modi�ed ACF R� from the ACF R0estimated from measured and �ltered data.R� = F�1R0 (95)The modi�ed ACF is orreted for systemati errors onneted to the �lter.The theoreti ACF of the simulation has been used to alulate the expetation of the ACFfrom �ltered (onstant number of samples and onstant time window, high pass and low pass)data sets. The ACF are transformed to the frequeny domain using the Fourier transform.Figure 11 shows the results of the omputer simulation. It shows a good similarity of theorreted PSD from �ltered data and the theoreti PSD derived from the simulation parameters.4.2 Asymmetri FilterLike desribed in setion 3.2.1 and setion 3.2.2 the asymmetri �lters an be written as a lineartransform from the true ACF R to the expeted ACF of the �ltered data set R0. Therefore, the24



Figure 11: The orreted PSD of a simulated LDA data set, �ltered symmetrially
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Figure 12: The orreted PSD of a simulated LDA data set, �ltered asymmetriallyequation (88) has to be alulated only one for k = 0 leading to a disrete �lter vetor fk. Theexpetation of the ACF for the �ltered data beomesEfR0kg = fk �Rk (96)with the onvolution operator �.An inverse Filter and hene a modi�ed ACF estimation R� with orreted �lter errors anbe found from the �lter oe�ients by the disrete and impliite deonvolutionR�k = 1f0  R0k � K�k�1Xi=1 fjR�k+j! (97)with the maximum time lag (K � 1)�� . Beause of the use of R�k+j for the derivation of R�k thealulation has to start with the maximum time lag R�K�1.The theoreti ACF of the simulation has been used to alulate the expetation of the ACFfrom �ltered (onstant number of samples and onstant time window, high pass and low pass)data sets. The ACF are transformed to the frequeny domain using the Fourier transform.Figure 12 shows the results of the omputer simulation. It shows a good similarity of theorreted PSD from �ltered data and the theoreti PSD derived from the simulation parameters.
26



parameter unit valuenumber of realizations � 1 000model � AR2(yn = �1yn�1 + �2yn�2 + an)model parameters � �1 = 1:8, �2 = �0:9sampling frequeny (primary series) kHz 10mean veloity ms�1 0.0variane m2s�2 0.3observation time s 10mean data rate (seondary series) kHz 1.0noise power m2s�2 0.0veloity bias � noharmoni amplitude ms�1 0.0/1.0harmoni frequeny Hz 1.0Table 2: Simulation parameters for statistial investigations

Figure 13: Simulated LDA data set with periodi omponent5 Statistial InvestigationsTo get information about the expetation and the variability of ACF and PSD estimators with�lter and orretion tehniques a series of 1 000 realizations of LDA data sets were simulated(table 2). To simulate the usual task of LDA data �ltering, additionally to the normal data sets(�gure 5) another type of data was generated by adding a harmoni omponent of given frequenyand amplitude and randomly hosen phase (�gure 13). The 1 000 series of eah type wereproessed by the di�erent �lter types (setion 2) and orreted in the desribed way (setion 4).The ACF of eah data set was transformed into the PSD using the Fourier transform. The setsof PSDs were analysed statistially. For eah data and �lter type the expetation was estimatedthrough the mean PSD and the variability through the estimation's variane.Figure 14 shows the results for the symmetri �lters (high pass and low pass; onstantnumber of samples and onstant time window) without a periodi omponent. Figure 15 showsthe orresponding results for the data sets with the periodi omponent and �gures 16 and 17the results for the asymmetri �lters.For the data sets without a periodi omponent (�gures 14 and 16) the systemati errors ofthe data �ltering an be orreted ompletely for all �lter types. But the estimation's variabilityis larger than the variability of the proedure without any �lter. Therefore, it doesn't make27



Figure 14: Empirial Expetation and estimation's variability for the symmetri �lters withouta periodi omponent 28



Figure 15: Empirial Expetation and estimation's variability for the symmetri �lters with aperiodi omponent 29



Figure 16: Empirial Expetation and estimation's variability for the asymmetri �lters withouta periodi omponent 30



Figure 17: Empirial Expetation and estimation's variability for the asymmetri �lters with aperiodi omponent 31



a) b)

Figure 18: Systemati errors (the step at 1 kHz) for symmetri high pass �ltering a) with alarge onstant number of samples and b) with a large onstant time length (data set without aperiodi omponent)sense to use the �ltering tehnique for data sets without signi�ant power in the non-interestinglow-frequeny range.For the data sets with a periodi omponent (�gures 15 and 17) the systemati errors ofthe data �ltering an be orreted only for the high pass �lters. The estimates using the lowpass �lters are ompletely wrong. The ourse of that e�et is the high power in large timesales that was not used in the derivation of the �lter harateristis. The high pass �ltersdon't show this e�et, beause they suppress just this frequeny range. Furthermore, it an beseen that the variability of estimation is redued for the high pass �lters, but only for higherfrequenies. The low frequenies are suppressed by the �lters hene the oe�ients for the�lter orretion are heavy in this range. This is more distint for the symmetri �lters beausethey suppress the power in the low-frequeny range more heavy than the asymmetri �lters.Therefore, the orretion oe�ients are more heavy for the symmetri �lters and hene thevariability is higher, espeially for low frequenies. That makes the asymmetri high pass �lteringwith the orresponding orretion preferable for this problemati type of LDA data. Besides,the derivation of the �lter harateristis and the orretion is signi�antly more simple for this�lter type and the LN as well as the FST an be used to redue the estimation's variability onemore.6 ReommendationsThe �ltering tehnique should be used only in the ase of signi�ant power in a non-interestingfrequeny range. To separate the high frequeny part an asymmetri high pass �lter should beused with the orresponding orretion. It is equal whether a onstant number of samples or aonstant time window has been used. The ACF should be alulated with the slot orrelationwithout self produts. The asymmetri �ltering with it's orretion an be ombined with theFST and the LN to redue the estimation's variability.The �ltering tehniques should not be used without an adequate orretion beause of sys-temati errors, even in the ase of symmetri �ltering with large numbers of samples or largetime windows to alulate the loal mean (�gure 18).To alulate the statistis of the low frequeny range a redued temporal resolution an beused. There are no aliasing errors (�gure 19). Note that the variability of the spetral estimateis proportional to the number of slots and the time step �� . A redued temporal resolution withthe same number of slots leads to an inreased variability (�gure 20). Furthermore, this leads to32



a) b)

Figure 19: PSD with redued temporal resolution a) without and b) with a periodi omponentof 1Hz

Figure 20: Variability of the PSD estimate with redued temporal resolution (data set withouta periodi omponent)
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a) b)

Figure 21: Systemati errors for symmetri low pass �ltering a) with a onstant number ofsamples and b) with a onstant time length (data set without a periodi omponent)

Figure 22: Systemati error for an averaging �lter (data set without a periodi omponent)an inreased (to the power of two) number of alulations. Therefore it is neessary to reduethe number of samples.The low pass �lters should not be used for this. Without a �lter orretion there is asystemati error in the ACF or PSD of the �ltered data (�gure 21). It is not an aliasing error,but it is a omplex dependene of the result on the true data statistis and the �lter. The useof the low pass �lters together with their orretion leads to ompletely wrong results in thepresene of a periodiity with a low frequeny (�gures 15 and 17). Furthermore, these �lters donot lead to a redued data set.An averaging �lter with tAV i = 1M MiXj=M(i�1)+1 tj (98)yAV i = 1M MiXj=M(i�1)+1 xj (99)should never be used to redue the number of data samples in an LDA data set, beause ofsystemati errors (�gure 22). Furthermore, the sampling statistis of the �ltered data set is notLDA data like. That leads to problems with the slot orrelation.34



Figure 23: Expetation and variability of the downsampling proedure (data set without aperiodi omponent)A solution of that problem is the downsampling. For eah original data sample an independentrandom number is taken from the interval [0; 1). Only these samples are written to the new dataset where this random number is less than 1=M . That leads to a redued number of samplesbut some information are lost like with a redued data rate. The variability of following ACFestimations is inreased (�gure 23). But the new data set has an LDA onform sampling statisti,there are no problems with the slot orrelation, even not with the FST or the LN, and there isthe possibility of asading several downsampling �lters to expand the frequeny range repeated.7 SummeryThe harateristis of LDA data �ltering tehniques, espeially of the �lter desribed in [8℄,ould be derived. The systemati errors of this tehnique ould be predited and removedsuessfully. New, asymmetri �lters were developed whih lead to better results together witheasier predition and orretion expressions. The proof ould be furnished that the asymmetrihigh pass �ltering and the orresponding orretion are useful to redue the variability of ACFor PSD estimations in the presene of a signi�ant periodi omponent with a low frequeny. Forthe statistial estimations with lower temporal resolution a bias free proedure was developed toredue the number of data samples and hene the omputational expenditure.8 PostsriptumIn onnetion with investigations how proessor delays in�uene the results of ACF and PSDestimations using the new �lter algorithms the re�ned expression for the probability density(equation 79) pg(t) = ( _n for t = 0_nPM�1i=0 ((t�(i+1)t0) _n)ii! e�(t�(i+1)t0) _n otherwise (100)was used with respet to the proessor delay t0. It presumes that a group of i samples needs atleast an interarrival time of (i+1)t0 between the preeding and the following sample. Beause ofthe limited number of samples within a given time interval an additional norm fator is neessaryin the ase of using a onstant time window (equations 36 and 86�88).pm(m;�t) = ( _n(�t�(m+1)t0))mm! e� _n(�t�(m+1)t0)Pb�t=t0i=0 ( _n(�t�(i+1)t0))ii! e� _n(�t�(i+1)t0) (101)35



a) b)

Figure 24: Predition of the PSD of an asymmetrily �ltered data set with proessor delay a)with a onstant number of samples and b) with a onstant time windowa) b)

Figure 25: Mean of the orreted PSD of an asymmetrily �ltered data set with proessor delaya) with a onstant number of samples and b) with a onstant time windowThe predition of the PSD of a �ltered data set (�gure 24) shows a good orrespondene withthe estimation.Figures 25 and 26 show the mean and the variane of the PSD estimation using the orretionmethod. The orreted estimation has no signi�ant deviations to the simulation exepting thelowest frequenies, where the estimation variane is very large.This is a basi problem of the �lter and orretion algorithms. The aim of the �lteringtehnique is to redue the power in the low frequeny range yielding to deviations. The aim ofthe orretion algorithm is to orret these deviations yielding to a higher estimation variability.The ombination of both algorithms brings out a better result ompared to the un�ltered dataonly if the �lter onstants (M or B) are hosen in that way that the �nal variability beomessmaller. While the lowest frequenies of the PSD are not that important, the proedures arequite robust. But the estimation of ACF is very sensitive to the low frequeny range of the PSD.The PSD in �gure 25 yield to signi�ant deviations with large sales in the ACF (�gure 27).Note that this is not an e�et of the proessor delay, but it is a basi problem of the �lter andorretion tehnique.The onlusions from these results are:� The new �lter and orretion tehnique an be used to redue the variability of the PSDestimation in the high frequeny range for LDA data sets with a periodiity of signi�ant36



a) b)

Figure 26: Variane of the orreted PSD of an asymmetrily �ltered data set with proessordelay a) with a onstant number of samples and b) with a onstant time window
a) b)

Figure 27: Mean of the orreted ACF of an asymmetrily �ltered data set with proessor delaya) with a onstant number of samples and b) with a onstant time window
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a) b)
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