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This report investigates the accuracy of the velocity estimation us-
ing the Particle Image Velocimetry (PIV) or Particle Tracking Ve-
locimetry (PTV) and introduces possible improvements to PIV yield-
ing more accurate and more robust velocity estimates under given
conditions and extending the application range of this technique.
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Figure 1: PIV/PTV image pair

1 Introduction

Both techniques, the PIV and the PTV are analysing methods for image pairs
taken in a seeded flow field with known temporal distance (figure 1). The dis-
tance between the particle positions in the two images yields the local velocity
information. While the PTV method directly traces single particles, the PIV
uses the cross-correlation function to derive statistically the motion (figure 2).
Therefore, the possible accuracy of the PTV algorithm is given by the accuracy
of the detection of particle positions, whereas the PIV method is limited by the
accuracy of locating the correlation peak.

In both cases a transform from image co-ordinates into orthogonal real-world
co-ordinates can be necessary, e.g. for stereoscopic or any other non-orthogonal
imaging. This requires a resampling of the images, as also the window deforma-
tion technique [Huang et al. (1993); Scarano (2002)] does. Since deviations of the
interpolated intensity distribution directly influence the velocity estimate, this is
also a critical procedure, which should guarantee a minimum loss of information.

As no camera objective is ideal, the real particle images on the image plane are
distorted due to the limited spatial bandwidth of the camera objective and due to
aberrations. These two effects are combined in the point-spread function of the
camera objective [Ronneberger et al. (1998)]. The following section investigates
the accuracy of estimating the position of particles using a simplified model. The
continuous intensity function is given by a Gaussian or by an Airy function, which
is either sampled at the pixel center positions or integrated over the pixel area.

In section 3 the loss of information due to an interpolation is shown using
different interpolation methods.

Section 4 investigates the possible accuracy of displacement estimation between
two images using the cross-correlation function between images with single par-
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Figure 2: PIV (a) and PTV (b) results

ticle images or more particle images. In the latter case also the possibility of
truncated particle images at the borders of interrogation areas is recognized.

In all cases, the influence of a background gray level and noise has been inves-
tigated and the most accurate algorithms are given.

First, all these investigations are done with one-dimensional signals. In sec-
tion 5 the algorithms are adapted to two-dimensional images and in section 6
they are applied to simulated and real data.

Section 7 concludes with an outlook.

2 Estimation of particle positions from the image

The accurate estimation of the particle position from the obtained images is
essential for the PTV analysis. In this section several routines are investigated,
which derive the particle sub-pixel position from the discrete intensity field. At
this point no image interpolation is used. The influence of the interpolation
routine is shown in the next section.

2.1 Gaussian particle image

The most simple model of the imaging process of a small particle is the Gaus-
sian function of intensity, which is regularly sampled by the camera [Willert and
Gharib (1991)]. For simplification, only a one-dimensional function is used. Fig-
ure 3 shows a Gaussian function. The width is 2 pxl, which is defined by the e−2

of the maximum value.
A widely used method to derive the sub-pixel position of the maximum is to

fit a Gaussian function to the samples and to derive the maximum position of
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Figure 3: Gaussian function and the obtained samples
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Figure 4: Sub-pixel position bias for Gaussian intensity functions

the interpolation function. Since the logarithm of a Gaussian function yields a
second order polynomial, the sub-pixel position δ of the interpolants maximum
can be derived as

δ =
YI−1 − YI+1

2 (YI+1 − 2YI + YI−1)
(1)

relatively to the index I of the maximum sample, where Yi is the logarithm of
the functions value yi.

This interpolation method works exactly for a wide range of Gaussian functions.
In figure 4 the estimated deviation of the sub-pixel estimation is shown as a
function of the width and the exact sub-pixel position. In this ideal case no
significant bias can be seen.
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Figure 5: Sub-pixel position bias for Gaussian intensity functions using the pixel
integration

2.2 Gaussian particle image with pixel integration

In real world the pixel intensity function of a photo camera is not given as a
sampling of the spatial intensity field. The intensity value of a specific image
pixel is given as the integral of the spatial intensity field over the pixels area.
Details about the imaging model can be found in Ronneberger et al. (1998). The
model used here is more simple. A continuous Gaussian intensity function or
an Airy function (next section) is integrated over a square pixel area of the size
1 pxl× 1 pxl.

In figure 5 a Gaussian function has been partwise integrated yielding the inten-
sity values. For this function equation (1) has been used to derive the sub-pixel
position.

For very thin Gaussian function a bias of the sub-pixel position estimation can
be seen. However, for widths larger than 2 pxl this bias is smaller than 0.01 pxl.

2.3 Airy particle image with pixel integration

The particle image does not comply with the Gaussian function model. Due
to the limited optical resolution of the imaging system for the best focus, the
imaging function becomes an Airy disc.

Here only the one-dimensional case has been investigated. Again this function
has been integrated partwise to yield a realistic intensity function and equation (1)
has been used to derive the sub-pixel position.

Figure 6 shows the bias of the sub-pixel position estimation as a function of the
width of the Airy function and the exact position. For very thin functions a bias
of the sub-pixel position estimation can be seen. This bias does not much exceed
the bias for the Gaussian function. This is due to the pixel area integration,
which smooths the Airy function towards a Gaussian function. However, for
widths larger than 2 pxl this bias is smaller than 0.02 pxl.
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Figure 6: Sub-pixel position bias for an Airy intensity functions using the pixel
integration
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Figure 7: Sub-pixel position bias for Gaussian intensity functions with offset

2.4 Offset of gray values

Due to the logarithm, the equation (1) is sensitive to the offset of the gray values.
Therefore, the background of the PIV-image must be subtracted before the sub-
pixel position estimation can be done. The estimation of the background intensity
is influenced at least by local fluctuations over the image and image noise. A
further influence can occur if the estimation of the background intensity is done
without masking the high intensity of the particle images.

To separate the influence of an offset, the Gaussian function has been sampled
as in figure 4 and a constant value of 0.1 has been added and, again, equation (1)
has been used to derive the sub-pixel position. The results are shown in figure 7.
A significant deviation can be seen, which decreases for wider functions. For a
width of 2 pxl this bias can reach 0.06 pxl and for a width of 3 pxl still more than
0.01 pxl.

To reduce the influence of the gray value an extended Gaussian model can be
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Figure 8: Sub-pixel position bias for Gaussian intensity functions with offset using
the 4-parameter Gaussian model

used which includes the offset as an additional parameter

y(x) = a exp
[
−b(x− c)2

]
+ d (2)

This model function is fit to the 5 points around the maximum. The parame-
ters are estimated using an iterative optimization routine, which minimizes the
following error at the location of the maximum, I.

e =
I+2∑

i=I−2

[
yi −

(
a exp

[
−b(i− c)2

]
+ d

)]2
→ min (3)

The result is shown in figure 8, where the 4-parameter Gaussian model has
been fit to a sampled Gaussian function with an offset. The remaining bias is
negligible.

3 Estimation of particle positions from the image
after interpolation

Often in the PIV analysis, the image values are required at sub-pixel positions,
e.g. the transformation of the coordinates of oblique images into real cartesian
coordinates or the window deformation technique [Huang et al. (1993); Scarano
(2002)]. Therefore, the image is interpolated using an interpolation function and
resampled at new positions.

The bias of the sub-pixel position estimation after the interpolation and re-
sampling with a linear function is shown in figure 9 as a function of the correct
sub-pixel position δ and the distance of the resampling points to the original
sampling locations δres. With a used width of the Gaussian function of 2.5 pxl
the maximum bias is about 0.11 pxl and significantly exceeds the bias sources
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Figure 9: Sub-pixel position bias for Gaussian intensity functions with a linear
interpolation
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Figure 10: Sub-pixel position bias for Gaussian intensity functions for several
interpolation methods

investigated above. To avoid loss of information in the resampling process, bet-
ter interpolation methods should be used than the linear interpolation, which is
widely used due to its simplicity and robustness.

The image re-sampling is a crucial step for the appropriate reconstruction of
the image signal as has been shown by Pratt (1978). In Scarano (2002) several
interpolation schemes have been mentioned. Higher-order polynomial functions
are given as superior to the linear interpolation. Therefore, a 3rd order polyno-
mial interpolation, a cubic spline interpolation with 20 points, a Fourier series
interpolation and a cardinal function interpolation [Hall (1979)] with a Ham-
ming window to reduce the abruptness of the truncated ends of the sinc function
[Niblack (1986)] have been investigated.

In figure 10 the maximum bias of the sub-pixel position estimation is shown as
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Figure 11: Sub-pixel position bias for the Gaussian model interpolation for several
intensity functions

a function of the width of the Gaussian function for several interpolation schemes.
Indeed, the higher-order interpolation schemes are better than the simple linear
interpolation. However, the remaining bias cannot be neglected.

As mentioned in Scarano (2002) the PIV signal spectrum has a major com-
ponent in the high-frequency part, at least for diameters less than 3 pxl. The
Nyquist criterion is not fulfilled and the PIV image is under-sampled. There-
fore, all interpolation schemes based on the sampled function only fail. Even the
cardinal function has a significant bias up to a particle image diameter of 4 pxl.
This result is different from those in Roesgen (2003), which can be explained as
a result of using larger particle images there.

More accurate results can be achieved using an optimized interpolation filter,
recognizing the signal character and the signal model used for the estimation of
the sub-pixel location. For high robustness a 11-point Gaussian filter is used with
the coefficients

ci(x) = exp
[
−b(x− i)2

]
for i = X − 5 . . . X + 5 (4)

where X is the rounded integer value of the resample positions x = j + δres. The
parameter b has been found to be optimal at b = 0.4. Note that this value is
optimal only for signals without noise, which have been investigated here. For
noisy signals this value must be chosen larger (section 4.5).

Figure 11 shows the results obtained for the Gaussian filter interpolation using
several intensity function. This interpolation scheme is clearly superior to the
methods above. For a width of 2.5 pxl a systematic error of less than 0.01 pxl
remains for the Gaussian intensity function. For the partwise integrated Gaussian
intensity function and the partwise integrated Airy function the results are even
better. For the latter one and peaks of ≥ 2.2 pxl width a systematic error of
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Figure 12: Sub-pixel displacement bias for the Gaussian model interpolation ap-
plied to a sampled Gaussian intensity function

less than 10−3 pxl, and for peaks with a width between ≥ 2.5 pxl and ≥ 4.0 pxl a
systematic error of less than 10−4 pxl remains.

The results of the Gaussian interpolation comply with Roesgen (2003), whereas
the results using the sinc interpolation scheme do not. Obviously, the size of the
particle image has been chosen there large enough to fulfil the Nyquist criterion
sufficiently. On the other hand, the usual size of particle images is in the range of
2 or 3 pxl, where a significant bias remains for the sinc interpolation scheme, while
the Gaussian interpolation scheme even in this range yields excellent results.

4 Estimation of displacement between two images

In this section the displacement between two images with single peaks is investi-
gated. For these principal investigations, again only one-dimensional signals are
used.

4.1 Estimation from single peaks without image interpolation

In PIV analysis the displacement of a particle ensemble between two images is es-
timated using the cross correlation function of the two images. The result is given
in image coordinates (pixel). A transformation of the image coordinates into real
length coordinates before the cross correlation requires an image interpolation
and resampling, which is not investigated here.

To quantify the possible accuracy of the displacement estimation two signals
are generated with single peaks, having different sub-pixel locations. As above,
Gaussian and Airy functions are either sampled or partwise integrated to derive
the discrete signals. From the maximum peak of the cross correlation function the
sub-pixel location of the peak is derived using the model-based method described
above.

Figure 12 shows the results for sampled Gaussian function for a peak width of
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Figure 13: Deviation of the correlation estimate and the power spectral density
function of the sampled series from the ideal Gaussian function

2.5 pxl. Even for this ideal case (single peak in each signal, sampled Gaussian
function) a significant deviation can be seen between the estimated sub-pixel
displacement and the simulation.

The cause of this phenomenon can be seen in figure 13. The continuous Gaus-
sian function is sampled at discrete locations. Here the samples must fit the
continuous function. Beside this, the autocorrelation function of the Gaussian
function and the autocorrelation function of the sampled signal are shown. The
autocorrelation function of the continuous Gaussian function is also a Gaussian
function. A sub-pixel location of a Gaussian correlation function could be accu-
rately estimated by the model-based method. However, the discrete correlation
function of the sampled function does not fit in the continuous correlation func-
tion. Furthermore, even the shape is not Gaussian. The continuous Gaussian
function has significant power in the frequency range above half the sampling
frequency. Therefore, the Nyquist criterion is not fulfilled. Therefore, a signifi-
cant aliasing error can be seen and a bias remains in sub-pixel estimation from
the sampled correlation function even for a Gaussian signal.

In figure 14 the remaining bias of the sub-pixel displacement estimation from
the correlation function is shown for several signals. Obviously, the systematic
errors decrease for larger peak widths, independent of the signal shape. Two
aspects are remarkable:

• The results for the partwise integrated functions are better than for the
sampled functions. The integration causes a smoothing of the signal and
the correlation function is more Gaussian-like.

• For peak widths up to 4 pxl, especially between 2.8 pxl and 3.8 pxl the bias
for the partwise integrated Airy function is smaller than for the Gaussian
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Figure 14: Sub-pixel displacement bias for the Gaussian model interpolation for
several intensity functions

function. Obviously, the correlation function of the sampled Airy function
is more Gaussian-like than for the sampled Gaussian function.

These results correspond to an image analysis without interpolation or window
deformation, where the particles collectively move without any velocity gradient
within the investigated area.

4.2 Estimation from single peaks with image interpolation

In this section the remaining estimation error of the sub-pixel displacement be-
tween two interpolated images is investigated. This corresponds e.g. to the image
transform from image coordinates into real length coordinates or the correlation
estimation from distorted images, which require a sub-pixel image interpolation.
For simplification, again only one-dimensional signals are used.

Two signals are generated with single peaks, having different sub-pixel loca-
tions. As above, Gaussian and Airy functions are either sampled or partwise
integrated to derive the discrete signals, which are interpolated to obtain a re-
sampled signal. To isolate the bias caused by the interpolation scheme, a 4-times
oversampling of the interpolated function is used. From the maximum peak of
the cross-correlation function the sub-pixel location of the peak is derived using
the model-based method described above.

The variation of the location of the peaks and the re-sampling positions in two
signals and the variation of the peak width yields a 5-dimensional dependence
of the remaining sub-pixel displacement bias. To reduce the number of vari-
ables, statistical averaging is used, quantified by the RMS value of the sub-pixel
displacement bias.
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Figure 15: RMS value of the sub-pixel displacement error for Gaussian intensity
functions for several interpolation methods
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Figure 16: RMS value of the sub-pixel displacement error for the Gaussian model
interpolation for several intensity functions
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Figure 17: RMS value of the sub-pixel displacement error for the Gaussian model
interpolation applied to a sampled Gaussian intensity function

Figures 15 and 16 show the RMS values of the sub-pixel displacement bias for
the sampled Gaussian intensity function using different interpolation schemes and
for the Gaussian filter interpolation for different intensity function respectively.
The Gaussian filter interpolation is clearly superior. For a peak width of 2.3 pxl of
the sampled Gaussian intensity function a sub-pixel displacement RMS value of
0.01 pxl remains. For the partwise integrated Gaussian function and the partwise
integrated Airy function the RMS value is even smaller.

4.3 Estimation from multiple peak signals

To recognize the influence of multiple peaks, the investigation of the remaining
RMS value of the sub-pixel displacement bias is performed also with multiple peak
signals. The peaks have random location in the signal and random amplitudes,
where all peaks have identical displacement between the two signals. Again the
two signals are interpolated and re-sampled with a 4-times oversampling. The
displacement between the two signals, the re-sampling positions and the peak
widths are varied.

The RMS value of the sub-pixel displacement error is almost independent of
the number of peaks in the signal. In figure 17 the results for the Gaussian model
interpolation applied to a sampled Gaussian intensity function are shown. Sim-
ilar results can be achieved for other intensity functions and other interpolation
schemes.

Note that the situation changes, if no oversampling is used. In that case also
the bias of the correlation peak interpolation, caused by the non-Gaussian shape
of the sampled correlation function occurs. Furthermore, there is a dependence of
the remaining bias on the number of peaks if no interpolation is used (figure 18).
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Figure 18: RMS value of the sub-pixel displacement error for the sampled Gaus-
sian intensity function without interpolation
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Figure 19: RMS value of the sub-pixel displacement error for the Gaussian model
interpolation applied to a sampled Gaussian intensity function with
edging influence

4.4 Peak Truncation

In the previous sections only signals with entire peaks have been used. The use of
interrogation windows for PIV analysis yields a sharp sub-division of the image.
Due to the random distribution of particles in the observed area, particle images
can occur close to the edge of the interrogation window leading to truncated
peaks.

In figure 19 the results for the Gaussian model interpolation applied to a sam-
pled Gaussian intensity function are shown using an FFT based correlation esti-
mator, which assumes a periodically continued function. For the two-dimensional
case with the two intensity functions z1(i, j) and z2(i, j) this estimator can be
written as

R(k, l) =
1

MN

M∑
i=1

N∑
j=1

z1(i, j)z2(i + kmodM, j + lmodM) (5)
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Figure 20: The truncation error of the correlation estimate

The RMS values are significantly higher than in figure 17, where only non-
truncated peaks have been used.

This is due to a strong bias of the correlation maximum location in the case
of truncated signals [Nogueira et al. (2001)]. Figure 20 shows the obtained cor-
relation functions for a one-dimensional test case. The two intensity functions
(figure 20a) have a displacement of 50 pixel, where the peak of the second sig-
nal is truncated. The maximum of the FFT-based correlation estimate is clearly
shifted to lower values. Note, that all correlation estimates in figure 20b have
been normalized to a maximum value of 1 for comparison.

Alternative correlation estimators, as the direct correlation estimate, without
presumed periodicity

R(k, l) =
1

MN

min(M,M−k)∑
i=max(1,1−k)

min(N,N−l)∑
j=max(1,1−l)

z1(i, j)z2(i + k, j + l) (6)

or the normalized direct correlation estimate (normalization A)

R(k, l) =
1

(M − |k|)(N − |l|)

min(M,M−k)∑
i=max(1,1−k)

min(N,N−l)∑
j=max(1,1−l)

z1(i, j)z2(i + k, j + l) (7)

do not significantly improve the situation.
The influence of the truncation error can be escaped with the alternative nor-

malization (B) using the variances of the two investigated image parts [Willert
and Gharib (1991)], leading the correlation coefficient function

ρ(k, l) =

∑min(M,M−k)
i=max(1,1−k)

∑min(N,N−l)
j=max(1,1−l) z1(i, j)z2(i + k, j + l)

√
AB

(8)
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Figure 21: RMS value of the sub-pixel displacement error for the Gaussian model
interpolation applied to a sampled Gaussian intensity function using
the correlation coefficient estimation with normalization

with

A =
min(M,M−k)∑
i=max(1,1−k)

min(N,N−l)∑
j=max(1,1−l)

z2
1(i, j) (9)

B =
min(M,M−k)∑
i=max(1,1−k)

min(N,N−l)∑
j=max(1,1−l)

z2
2(i + k, j + l) (10)

Even for truncated peaks this estimator yields the correct location of the maxi-
mum and significant smaller RMS values of the sub-pixel displacement estimation
bias (figure 21).

Note that also iterative displacement estimators with a window shift corre-
sponding to the pre-estimated displacement [Westerweel et al. (1997)] reduce the
influence of truncated peaks, since these estimators try to find and correlate those
parts of the images with identical contents.

Therefore, the following investigations of the displacement estimation use an
additional iterative algorithm, which shifts the interrogation windows by ±1

2
of

the estimated velocity to derive a better estimate of the velocity. The number
of iterations is not given. The iteration runs until the optimum is found. The
calculation is stopped or rejected, if the algorithm diverges or the estimated
displacement is larger than the size of the interrogation area.

4.5 Noisy signals

In the case of an additional noise component in the signal, the width of the
Gaussian filter must be adapted. A wide filter function, corresponding to a small
b in equation (4) yields a smoother peak in the correlation function, where the
noise is suppressed. However, also the systematic part of the peak is smoothed.
Therefore, the accuracy of the estimation of the maximum location decreases.

18



 0
 0.02

 0.04
 0.06

 0.08
 0.1

noise

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

b

 0.001

 0.01

 0.1

RMS (pxl)

Figure 22: RMS value of the sub-pixel displacement error for the Gaussian model
interpolation applied to a sampled Gaussian intensity function using
the correlation coefficient estimation with normalization

Furthermore, in combination with an oversampling of the interpolated image,
used to avoid the bias described in section 4.1, the correlation peak is wide
and even small noise intensities yield a high probability of wrong displacement
estimates.

To reduce the influence of the noise and to stabilize the displacement estima-
tion, the correlation table can be downsampled, yielding smaller peaks. Note that
the downsampling of the correlation table is not the inverse of the oversampling
of the images. However, also the width of the Gaussian filter must be adapted.
The filter parameter b in equation (4) must be set to about 0.5 for 1 % (noise
amplitude/signal amplitude) and 1.1 for 10 % noise (figure 22).

5 Two-dimensional displacement estimation

The entire procedure of displacement estimation consists of

• image interpolation with over-sampling,

• correlation estimation,

• downsampling of the correlation table, and

• detection of the maximum location with sub-pixel estimation.

This procedure has the three parameters

• width of the Gaussian filter,

• over-sampling factor, and

• down-sampling factor.
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Table 1: Simulation parameters
Particle image type sampled Airy function
Particle image width 2.5 pxl
Particle image intensity equally distributed from [0 . . . 1]
Gray offset 0.05
Noise equally distributed from [0 . . . 0.05]
Interrogation area 32 pxl× 32 pxl
Displacement [∆x; ∆y] = [−1 . . . 1 pxl;−1 . . . 1 pxl]
Number of particles Poison distribution with a mean of 40

In a computer simulation a series of images has been generated with varied estima-
tion parameters. The other simulation parameters are given in table 1. Figure 23
shows the obtained RMS values of the estimation error and figure 24 the obtained
probability of spurious estimates.

For a higher over-sampling the remaining estimation error decreases, whereas
the mathematical requirements increase strongly. For any over-sampling factor,
the remaining estimation error is smallest for no down-sampling (down-sampling
factor 1). On the other hand, this procedure yields a high probability of spuri-
ous estimates, so that a higher down-sampling factor must be chosen. A good
compromise between the accuracy, the probability of spurious estimates and the
computational costs is given by an over-sampling factor of 2 in combination with
a down-sampling factor of 2 and a Gaussian filter parameter b = 0.9. Further-
more, this combination yields very reliable results with a very small probability of
spurious estimates (no spurious estimates have been registered in the simulation).

6 Application to simulated and real images

6.1 Simulated data

To investigate the performance of the new PIV algorithm, PIV images with vary-
ing parameters have been simulated. The fixed parameters and the varied pa-
rameters with their range are given in table 2.

In that case the remaining RMS error of the displacement estimate must be
drawn over 4 varying parameters. In figure 25 the parameter regions are marked,
where the algorithms have an RMS error of less than 0.01 pxl. The new algorithm
reaches this value in wide parameter ranges. Only for noise levels above 0.08 pxl
and for small particle images in combination with a small number of particles the
algorithm does not reach this value. The conventional PIV algorithm does not
reach this value at all. Therefore, in figure 26 the parameter ranges have been
marked, where the RMS error is less than 0.04 pxl. The new algorithm fulfils this
requirement for all parameter choices. The conventional PIV algorithm reaches
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Figure 23: RMS value of the sub-pixel error for the two-dimensional displacement
estimation

Table 2: Simulation parameters
Particle image type sampled Airy function
Particle image width 1.0 . . .5.5 pxl
Particle image intensity equally distributed from [0 . . . 1]
Gray offset 0.01 . . . 0.09
Noise 0.01 . . . 0.09
Interrogation area 32 pxl× 32 pxl
Displacement [∆x; ∆y] = [−1 . . . 1 pxl;−1 . . . 1 pxl]
Number of particles 5 . . . 55
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Figure 24: Failure probability of the sub-pixel error for the two-dimensional dis-
placement estimation
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Figure 25: Paramater ranges with RMS errors less than 0.01 pxl
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Figure 26: Paramater ranges with RMS errors less than 0.04 pxl
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Figure 27: Results of the conventional (a) and the new (b) PIV algorithms applied
to simulated image data

this limit only for particle image diameters between 2 and 3 pxl and only for a
large number of particles in the measurement volume. On the other hand, the
sum of the noise and the background gray level must be less than approximately
0.1.

The new algorithm clearly extends the application range of the PIV technique
and, on the other hand, it yields more accurate velocity estimates. In figure 27
the images from figure 1 have been analyse with the common and the new PIV
algorithm. The comparison clearly shows that the new algorithm yields more
reliable results due to a significant reduction of spurious vectors.

6.2 Real data

To test the reliability of the new method, a real image pair (figure 28) has been
taken from an experiment [Brede et al. (2003); Westergaard et al. (2003)]. The
results of the new algorithm shown in figure 29 are more reliable than those of the
conventional algorithm, which yields more spurious velocity vectors. Note that
the flow field has spatial velocity gradients, hence due to the spatial averaging, the
algorithm cannot reach the accuracy of the preceding sections and the sensitive
validation often rejects the estimates.

7 Conclusions and Outlook

The improved PIV algorithm yields an accuracy of better than 0.01 pxl in wide
parameter ranges for flow fields without velocity gradient. In the case of velocity
gradients an averaging occurs, which limits the reachable accuracy. Therefore,
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Figure 28: Experimental images

25



 0

 100

 200

 300

 400

 500

 0  200  400  600  800  1000  1200

 0

 100

 200

 300

 400

 500

 0  200  400  600  800  1000  1200

Figure 29: Results of the conventional (a) and the new (b) PIV algorithms applied
to real image data
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significant improvements can be achieved only with algorithms, which recog-
nize or even estimate the velocity gradient. Furthermore, this technique can be
combined with a model-based estimation of the flow field recognizing also the
continuity of the flow.
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