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ABSTRACT

The laser Doppler anemometry (LDA) as a non-intrusive technique
of velocity measurements is widely used in the study of turbulent
flow fields. The computation of statistical functions of the mea-
sured velocity time series presents problems, since, by nature of
the technique, the data set is stochastically sampled in time. Af-
ter a brief review of the LDA measurement principles the essential
properties of LDA data sets will be explained and a review of the
methods to handle the special sampling features of the data will be
given. Recent developments will be presented for the estimation
of autocorrelation functions and turbulence spectra.

1. LDA TECHNIQUE

The laser Doppler anemometry (LDA) is a widely accepted toolfor
fluid dynamic investigations in gases and liquids and has been used
as such for more than three decades. It is a well-establishedtech-
nique that gives information about flow velocity. Its non-intrusive
nature and directional sensitivity make it very suitable for appli-
cations with recirculating flow, chemically reacting or high-tem-
perature media and rotating machinery, where physical sensors are
difficult or impossible to use. It requires tracer particlesin the flow.

The basic configuration of an LDA system [6, 35] consists of
(figure 1) a continuous wave laser, transmitting optics, receiving
optics and a photodetector.

The laser beam is split into two beams and the focusing lens
forces the two beams to intersect. In the region of intersection
the two laser beams interfere to produce light intensity variations
leading to parallel planes of constant intensity with a Gaussian en-
velope (figure 2). The planes have the constant distance�x given
through the wave length of the laser light and the angle between
the intersecting beams. The envelope forms a prolate ellipsoid of
constant amplitudes. A typical size of the measurement volume is40 � 40 � 200 �m that defines the spatial resolution of the LDA
system.

The photodetector receives light scattered from tracer particles
moving through the measurement volume and converts the light in-
tensity into electrical current, the burst signal (figure 3). The burst
frequency is proportional to the velocity component perpendicular
to the bisector of the two laser beams. The signal processingre-
moves noise from the signal and extracts the burst frequencyand
hence the velocity information.

Another way to interpret the principle of a LDA system is
to presume that the laser beams are scattered separately by the
tracer particle. For a moving particle the scattered light is Doppler
shifted, hence the name of the technique. The frequency shift is
different for both laser beams. The scattered light interferes on the
surface of the photodetector, where the Doppler frequency can be
measured.
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Figure 1: Set-up of a laser Doppler anemometer

Figure 2: The LDA measurement volume

Figure 3: LDA burst signal



Figure 4: Stochastic sampling with a laser Doppler anemometer

2. LDA DATA SET

The LDA technique gives a transient history of velocity values de-
rived from individual particles that cross the measurementvolume.
For each velocity measurement there exists an arrival time of the
corresponding particle. The LDA data set represents a series of
time-velocity pairs.

2.1. Stochastic sampling

The most important influence to the characteristics of the LDA
data set is given through the dependence on tracer particles. In
[7, 9] investigations on sampling statistics are presented. Presum-
ing an equal particle distribution in space with a constant con-
centration
s, the intervals�t between the measurements are dis-
tributed exponentially p(�t) = _ne� _n�t (1)

with the mean data rate_n (figure 4).

2.2. Correlation between velocity and data rate

For non-constant velocities the data rate is not constant inspite of
a constant particle concentration
s. Presuming a constant spatial
distribution of tracer particles the fluid or gas volume thatpasses
the measurement volume within a given time is proportional to the
velocity and hence, the number of measurements is proportional
to the velocity as well. This leads to a frequent occurrence of high
velocity measurements and to a distorted velocity distribution (fig-
ure 5).

Furthermore, the data rate depends on the size of the mea-
surement volume. It is proportional to the projection areaA? of
the measurement volume normal to the flow velocity vector. Be-
cause of the significant prolate shape of the measurement volume
the size of the projection depends on the direction of the flow. An
expression of the variable data rate is given through_n = 
sA?(~u) j~uj (2)

which describes the correlation of the data rate and the velocity
[21]. Consequently, the sampling scheme depends on the mea-
sured velocity value.

Figure 5: Velocity distribution of the original flow field compared
to the data set

Figure 6: Distribution of interarrival times

2.3. Noise

The optical system, the velocity gradients within the measurement
volume, the temporal and amplitude resolution of the detector and
the signal processing lead to random deviations of the velocity
measurement and thus to a noise component in the LDA data set
[5, 13].

2.4. Processor delay

The velocity measurements ensue normally from single particles.
If two particles enter the measurement volume within a shorttime
interval the burst signals overlap. Because of the phase differ-
ence of the bursts a phase drift can be seen within the double burst
signal. Therefore, the burst frequency cannot be derived exactly.
These multi-burst signals are detected by pre-processors that reject
them from the data stream. This leads to a significant underrepre-
sentation of small interarrival times (figure 6).

3. LDA DATA PROCESSING

The stochastic sampling given through the observed processwith
its complex dependence on the velocity vector requires specific
methods for the data processing. There are two main tasks of LDA
data processing:



1. the adequate reconstruction of the velocity as a functionof
the time and

2. the estimation of statistical values and functions like the
mean, the variance, the autocorrelation function (ACF) or
the power spectral density (PSD) of the flow velocity fluc-
tuations.

The reconstruction of the continuous velocity function from ir-
regularly sampled data has a tradition at the SampTA conference.
The individuality of the reconstruction from LDA data sets is de-
terminated by the extremely low data rate with significant power in
the original signal above the mean data rate, the variable data rate,
the dependency of the sampling rate on the measurement value, the
variable sampling distribution and the noise which can be aslarge
as the original velocity signal. A powerful algorithm for relatively
high data rates is given in [20].

In many cases the exact velocity function is not required, only
the statistics of the flow field. To derive the flow field statistics
from an LDA data set two methods are possible:

1. the direct estimation from the LDA data set using the infor-
mation of the sampling statistics and

2. the reconstruction of the continuous velocity function,pos-
sibly with an equidistant resampling with respect to the dig-
ital signal processing and statistic’s estimation from there-
constructed function.

In contrast to the normal reconstruction task, here the onlyre-
quirement is the preservation of the statistics and the result can
therefore look strange. Even so, it is possible to use any recon-
struction method if there is an appropriate transform to correct the
statistics calculated from the reconstructed function.

Because of the complexity of the sampling statistics a com-
plete mathematical description has not yet been derived. Instead,
several groups of researchers have attempted to optimize individ-
ual algorithms for specific applications. The goal is to minimize
the bias and the estimator’s variance for special conditions. The
second goal is to get robust algorithms for drifting processparam-
eters. Because of the great variaty of applications many different
algorithms for statistical analysis exist.

The pioneering work in spectral analysis from LDA data re-
sulted in two estimators, theslotting technique[16, 27, 11, 28, 29]
and adirect transform[12]. But the problem of velocity bias
[21, 8] focused attention on simpler velocity statistics.

The cause of the velocity bias is the dependence of the data
rate on the velocity (section 2.2). The distorted velocity distribu-
tion of the measured LDA data (figure 5) exhibits other statistics
than the original flow field. The mean and the variance estimated
from the LDA data set throughm̂u = 1N NXi=1 ui (3)�̂2u = 1N � 1 NXi=1 (ui � m̂u)2 (4)

with N velocity samplesui have large deviations (figure 7).
The hat on top of the sign indicates the estimation of the statistical
value.

With a weighting technique [4] with individual weightswi for
each measured velocity valueui

Figure 7: The bias of mean and variance estimation from LDA data
without a weighting algorithm (turbulence intensity=p�2u=mu)

m̂u = PNi=1 uiwiPNi=1 wi (5)�̂2u = PNi=1(ui � m̂u)2wiPNi=1 wi (6)

the results are much more reliable. Several methods to derive
the weights from the LDA data set were developed, e.g. the ve-
locity weighting [21], the arrival time weighting [2] and the transit
time weighting [14].

These algorithms were investigated [10, 26], so that their ad-
vantages and disadvantages could be recovered for different con-
ditions. The one-dimensional velocity weighting (wi = 1=ui) is
suitable only for one-dimensional flows. In the case of high tur-
bulence intensity or shear stesses the three-dimensional velocity
vector is necessary (wi = 1=j~uij). This requires a very expensive
three-dimensional LDA system. Nevertheless, the velocityweight-
ing is very noise sensitive, so that it is suitable only for very high
burst signal qualities.

The transit time weighting (wi = �i) uses the time the tracer
particle needs to pass the measurement volume. With a good es-
timate of the transit time�i this weighting method is exact for
constant particle concentrations even for three-dimensional turbu-
lence. But the estimation of the transit time from a LDA burstis
very complicated. The time is quantified with the period of the
Doppler frequency, the signal can have a large noise level and the
effective size of the measurement volume depends on the particle
size.

The most robust weighting technique is the arrival time weight-
ing (wi = 1=�ti) using the interarrival time between two parti-
cles�ti = ti� ti�1. The effectivity of the arrival time weighting
depends on the data rate. For high data rates the velocity bias dis-
appears. With lower data rates the effectivity becomes smaller, but
the direction of operation is always correct. Furthermore,this is
the only weighting method that works with non-constant particle
concentrations.

In the mid to late eighties a gradual rekindling of interest in
dynamic statistics like ACF or PSD took place as investigators
tried to use them as tools to study the small scales of turbulence.
Comparative studies [30, 32] indicated that the early estimators



Figure 8: The effect of the refinement for the sample-and-hold
reconstruction

possessed a high degree of variance and a susceptibility to ve-
locity bias. Even the age old sample-and-hold reconstruction of
LDA data led to a filtered noise effect, which obscures the high
frequency portion of the spectrum [1].

The results of statistical estimations from reconstructedLDA
data sets were found to be very sensitive to the reconstruction
method used and thus investigations to find the best method of
reconstruction [34, 31, 17, 18, 15] were started. A comparison of
several reconstruction methods [22] leads to the conclusion that all
have a similar behavior. The data rate was found to be the main
parameter, similar to the findings for the sample-and-hold recon-
struction in [1]. For high data rates the results are reliable with
marginal differences between the reconstruction schemes.For low
data rates all reconstruction methods have a low pass character,
known as thedata rate filter, that suppresses the higher frequen-
cies and leads to aliasing errors, where the different reconstruction
schemes have their individual filter characteristics.

In [1] a mathematical description of the filter function is de-
rived for the sample-and-hold reconstruction, that gives an expres-
sion of the ACF calculated from the reconstructed velocity func-
tion in terms of the true ACF. A similar expression for the sample-
and-hold reconstruction in combination with an equidistant resam-
pling is given in [23]. The equidistant resampling leads to alinear
data rate filter that can be inverted. The inverse filter can beused
to correct the ACF derived from the reconstruction.

The sample-and-hold reconstructed functionu(r)(t) is resam-
pled with equidistant intervals�� . The ACF of the new data setu(r)i = u(r)(i��) is given throughR̂(r)k = R̂(r)(k��) = 1N (r) � jkj N(r)�jkjXi=1 u(r)i u(r)i+jkj (7)

with the numberN (r) of data points in the reconstructed and re-
sampled data set. The filtered ACFR̂(f)k = ( R̂(r)0 for k = 0(2
f + 1)R̂(r)k � 
f �R̂(r)k�1 + R̂(r)k+1� for k 6= 0

(8)
with 
f = e� _n��(1 � e� _n�� )2 (9)

leads to a refined estimation, with the filter parameter
f that de-
pends only on the mean data rate_n. Nevertheless, the noise in the
LDA data set leads to a systematic error in the ACF and the PSD.
A method to estimate the noise power and to correct the estimation
is given in [25].

Figure 8 shows the ACF estimates using a sample-and-hold
reconstruction with and without that refinement. The reconstruc-
tion without refinement shows significant systematic errors. The
refinement is able to correct the effect of the particle rate filter
completely.

The use of more complex reconstruction methods is possible
in principle, but the correction filter becomes unreasonably.

The second method with remarkable improvement in the last
few years is the slotting technique. In principle the arrival times
are quantified to get a quasi equidistant sampled data set with large
intervals without measurements. To derive the ACF the interval
between every two measurements is splitted into small bins (slots)
of width�� . The ACF is given throughR̂(k�� ) = PNi;j=1i6=j uiujbk(tj � ti)PNi;j=1i6=j bk(tj � ti) (10)

with the mask functionbk(� ) = � 1 for
�k � 12� � ��� < �k + 12�0 otherwise

(11)

The use of cross products only (i 6= j) leads to an estimation that
has no bias through the noise, because it is independent for each
velocity sample.

In the last few years two important improvements were devel-
oped for that technique, thelocal normalization[33] and thefuzzy
slotting technique[24].

The local normalization uses an alternative normalizationto
calculate correlation coefficients�(� ) def= R(�)=R(0) through�̂(k�� ) = ApBC (12)

with A = NXi;j=1i6=j uiujbk(tj � ti) (13)B = NXi;j=1i6=j u2i bk(tj � ti) (14)C = NXi;j=1i6=j u2j bk(tj � ti) (15)

Instead of the normal norm factor�2u this technique uses only these
velocity values for the estimation ofR(0) that are used for the
estimationR(�). The ACF can be found with the factor�̂2u from
equation (4) or (6). R̂(k��) = �̂2uApBC (16)

The effect of this technique is a decreased variability of the esti-
mate especially for large correlation coefficients.
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Figure 9: Fuzzy Slotting Technique

Figure 10: The reduction of estimation’s variability through the
local normalizationand thefuzzy slotting technique

The fuzzy slotting technique uses a lag products weighting
scheme (figure 9) defined asbk(�) = � 1 � �� ��� � k�� for

�� ��� � k�� < 10 otherwise
(17)

which allows lag products to contribute to two slots simultaneously
and weights lag products that lie close to the slot center more heav-
ily. This leads to a reduced variability of the estimate and at the
same time a reduced bias through the averaging within the slots.

In figure 10 the estimator’s variability is shown for the local
normalization and for the fuzzy slotting technique in comparison
to the normal slotting technique. While the local normalization
reduces the variability only for large correlation coefficients close
to the time lag zero with very high effectivity the fuzzy slotting
technique is not as effective but it reduces the variablity for any
time lag.

These results are confirmed by the recently performedbench-
mark tests[3] of spectral estimation from LDA data sets. Here the
idea was born to merge both techniques [19], producing a more
powerful estimator.

A further development of this technique is the implementation
of the weighting method withA = NXi;j=1i6=j uiujwiwjbk(tj � ti) (18)

Figure 11: Distribution of the interarrival timeti � ti�1 for the
slotcorrelation withk�� = 5ms (simulation without processor
delay) B = NXi;j=1i6=j u2iwiwjbk(tj � ti) (19)C = NXi;j=1i6=j u2jwiwjbk(tj � ti) (20)

and the variance estimatê�2u from equation (6) to overcome the
velocity bias.

The use of the velocity weighting or the transit time weighting
is possible like for the statistical moments. Instead of thenormal
arrival time weighting theforward-backward arrival time weight-
ing should be prefered withwi = ti � ti�1 and wj = tj+1 � tj for j > iwi = ti+1 � ti and wj = tj � tj�1 for j < i (21)

because of the dependence of the interarrival time distribution on
the calculated time lagk�� (figure 11).

4. CONCLUSIONS

Due to its the physical working principle, the data processing in
the laser Doppler anemometry is an application of stochastic sam-
pling. For many cases the adequate reconstruction of the flowve-
locity function is a secondary task. The main task of LDA data
processing is the calculation of flow statistics. That can bedone di-
rectly from the data set containing the information about the sam-
pling statistics or via a reconstruction that preserves thestatistics
or a reconstruction with a subsequent refinement that corrects the
statistics calculated from the reconstructed function.

The uniqueness of LDA data processing is the very low data
rate, that is even depending on the velocity itself, the special sam-
pling characteristics without an upper limit of intervals between
the samples, and the possible drifting process parameters in turbu-
lent flow fields.

The sample-and-hold reconstruction with its refinement and
direct spectral noise removal [25] and the slotcorrelationwith lo-
cal normalization and fuzzy slotting technique [19] in combination
with the forward-backward arrival time weighting are powerful es-
timators of the autocorrelation, that have a small estimation vari-
ability and that are very stable for several applications.
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Laser-Doppler-Signalen.Optica Acta, 24:43–67, 1977.

[6] F Durst, A Melling, and J H Whitelaw.Principles and Prac-
tice of Laser Doppler Anemometry. Academic Press, Lon-
don/New York/San Francisco, 1976.

[7] R V Edwards and A S Jensen. Particle-sampling statisticsin
laser anemometers: Sample-and-hold systems and saturable
system.J. Fluid Mech., 133:397–411, 1983.

[8] R V Edwards. Report of the special panel on statistical par-
tical bias problems in laser anemometry.Transactions of the
ASME, Journal of Fluids Engineering, 109:89–93, 1987.

[9] J C Erdmann and C Tropea. Statistical bias of the velocity
distribution function in laser anemometry. InProc. 1st Int.
Symp. on Appl. of Laser Techn. to Fluid Mechanics, Lisbon,
Portugal, 1982. paper 16.2.

[10] W Fuchs, H Nobach, and C Tropea. Laser Doppler anemom-
etry data simulation: Application to investigate the accuracy
of statistical estimators.AIAA Journal, 32:1883–1889, 1994.

[11] M Gaster and J B Roberts. Spectral analysis of randomly
sampled signals.J. Inst. Maths. Applics., 15:195–216, 1975.

[12] M Gaster and J B Roberts. The spectral analysis of randomly
sampled records by a direct transform.Proc. R. Soc. Lond.
A., 354:27–58, 1977.

[13] W K George and J L Lumley. The laser Doppler velocimeter
and its application to the measurement of turbulence.J. Fluid
Mech., 60:321–362, 1973.
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Corrections
page 3, caption of figure 7: turbulence intensity= p�2u=mu
page 3, right column, last but one paragraph:wi = �ti


