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ABSTRACT

The laser Doppler anemometry (LDA) as a hon-intrusive teghe
of velocity measurements is widely used in the study of tientu
flow fields. The computation of statistical functions of thean
sured velocity time series presents problems, since, hyraaff
the technique, the data set is stochastically sampled ie. tifi-
ter a brief review of the LDA measurement principles the eak
properties of LDA data sets will be explained and a reviewhef t
methods to handle the special sampling features of the ditaew
given. Recent developments will be presented for the etittima
of autocorrelation functions and turbulence spectra.

1. LDA TECHNIQUE

The laser Doppler anemometry (LDA) is a widely acceptedfimol
fluid dynamic investigations in gases and liquids and has beed
as such for more than three decades. It is a well-establisivbd
nique that gives information about flow velocity. Its nortrirsive
nature and directional sensitivity make it very suitable dppli-
cations with recirculating flow, chemically reacting or hitem-
perature media and rotating machinery, where physicabsgelase
difficult or impossible to use. It requires tracer partidgtethe flow.

The basic configuration of an LDA system [6, 35] consists of

(figure 1) a continuous wave laser, transmitting opticseiréog
optics and a photodetector.

The laser beam is split into two beams and the focusing lens

forces the two beams to intersect. In the region of inteisect
the two laser beams interfere to produce light intensityati@ans
leading to parallel planes of constant intensity with a Gearsen-
velope (figure 2). The planes have the constant distanegiven
through the wave length of the laser light and the angle batwe
the intersecting beams. The envelope forms a prolate eidpsf
constant amplitudes. A typical size of the measurementwelis

40 x 40 x 200 pm that defines the spatial resolution of the LDA

system.

The photodetector receives light scattered from traceighes
moving through the measurement volume and converts thitigh
tensity into electrical current, the burst signal (figure®)e burst
frequency is proportional to the velocity component pedieuar
to the bisector of the two laser beams. The signal processing
moves noise from the signal and extracts the burst frequandy
hence the velocity information.

Another way to interpret the principle of a LDA system is
to presume that the laser beams are scattered separatee by t

tracer particle. For a moving particle the scattered liglddppler
shifted, hence the name of the technique. The frequencyishif
different for both laser beams. The scattered light inteden the
surface of the photodetector, where the Doppler frequeanybe
measured.
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Figure 1: Set-up of a laser Doppler anemometer
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Figure 2: The LDA measurement volume
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Figure 3: LDA burst signal
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Figure 4: Stochastic sampling with a laser Doppler anememet  Figure 5: Velocity distribution of the original flow field cqrared
to the data set

2. LDA DATA SET

The LDA technique gives a transient history of velocity \ede- 1000
rived from individual particles that cross the measuremehtme.
For each velocity measurement there exists an arrival tihtleeo
corresponding particle. The LDA data set represents assefie
time-velocity pairs.
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number of events

2.1. Stochastic sampling
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The most important influence to the characteristics of th\ LD
data set is given through the dependence on tracer partithes
[7, 9] investigations on sampling statistics are presen®edsum-
ing an equal particle distribution in space with a constam-c
centrationc,, the intervalsAt between the measurements are dis-
tributed exponentially
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Figure 6: Distribution of interarrival times

p(At) = ne ™A (1)
(A1) 2.3. Noise

with the mean data rate (figure 4). The optical system, the velocity gradients within the measient

volume, the temporal and amplitude resolution of the deteamd
2.2. Correlation between velocity and datarate the signal processing lead to random deviations of the itgloc

N ) ) measurement and thus to a noise component in the LDA data set
For non-constant velocities the data rate is not constaspiibe of [5, 13].

a constant particle concentratiep. Presuming a constant spatial
distribution of tracer particles the fluid or gas volume thasses
the measurement volume within a given time is proportionghe 2.4. Processor delay
velocity and hence, the number of measurements is propattio
to the velocity as well. This leads to a frequent occurreridegh
velocity measurements and to a distorted velocity distidou(fig-
ure 5).

Furthermore, the data rate depends on the size of the mea
surement volume. It is proportional to the projection atea of
the measurement volume normal to the flow velocity vector Be
cause of the significant prolate shape of the measuremamtneol
the size of the projection depends on the direction of the. flav
expression of the variable data rate is given through

The velocity measurements ensue normally from single gasti
If two particles enter the measurement volume within a stiromet
interval the burst signals overlap. Because of the phaderdif
ence of the bursts a phase drift can be seen within the doubdé b
signal. Therefore, the burst frequency cannot be derivedtix
These multi-burst signals are detected by pre-procedsatsgject
them from the data stream. This leads to a significant ungere
sentation of small interarrival times (figure 6).

3. LDA DATA PROCESSING
i = co AL (@) | %)

The stochastic sampling given through the observed progitiss
which describes the correlation of the data rate and thecitglo  its complex dependence on the velocity vector requiresifipec
[21]. Consequently, the sampling scheme depends on the meamethods for the data processing. There are two main taskSAf L
sured velocity value. data processing:



1. the adequate reconstruction of the velocity as a funafon
the time and

2. the estimation of statistical values and functions like t
mean, the variance, the autocorrelation function (ACF) or
the power spectral density (PSD) of the flow velocity fluc-
tuations.

The reconstruction of the continuous velocity functiomfrio-
regularly sampled data has a tradition at the SampTA comdere
The individuality of the reconstruction from LDA data setsdie-
terminated by the extremely low data rate with significant@oin
the original signal above the mean data rate, the varialbéerdte,
the dependency of the sampling rate on the measurement tradue
variable sampling distribution and the noise which can bamg
as the original velocity signal. A powerful algorithm folagvely
high data rates is given in [20].

In many cases the exact velocity function is not requiretl; on
the statistics of the flow field. To derive the flow field statist
from an LDA data set two methods are possible:

1. the direct estimation from the LDA data set using the infor
mation of the sampling statistics and

2. the reconstruction of the continuous velocity functipos-
sibly with an equidistant resampling with respect to the dig
ital signal processing and statistic’s estimation fromréne
constructed function.

In contrast to the normal reconstruction task, here the mnly
quirement is the preservation of the statistics and theltrean
therefore look strange. Even so, it is possible to use anynrec
struction method if there is an appropriate transform toestirthe
statistics calculated from the reconstructed function.

Because of the complexity of the sampling statistics a com-

plete mathematical description has not yet been derivesteda,
several groups of researchers have attempted to optiniédn
ual algorithms for specific applications. The goal is to mmizie
the bias and the estimator’s variance for special conditiorhe
second goal is to get robust algorithms for drifting progessm-
eters. Because of the great variaty of applications marigreifit
algorithms for statistical analysis exist.

The pioneering work in spectral analysis from LDA data re-
sulted in two estimators, thsdotting techniqug¢l6, 27, 11, 28, 29]
and adirect transform[12]. But the problem of velocity bias
[21, 8] focused attention on simpler velocity statistics.
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Figure 7: The bias of mean and variance estimation from LCta da
without a weighting algorithm (turbulence intensity, /o2 /m,,)
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the results are much more reliable. Several methods toederiv
the weights from the LDA data set were developed, e.g. the ve-
locity weighting [21], the arrival time weighting [2] andedHhransit
time weighting [14].

These algorithms were investigated [10, 26], so that thekir a
vantages and disadvantages could be recovered for diffeoan
ditions. The one-dimensional velocity weighting;(= 1/u;) is
suitable only for one-dimensional flows. In the case of high t
bulence intensity or shear stesses the three-dimensietadity
vector is necessary = 1/|;|). This requires a very expensive
three-dimensional LDA system. Nevertheless, the velaedight-
ing is very noise sensitive, so that it is suitable only fonneigh
burst signal qualities.

The transit time weightingw{; = ;) uses the time the tracer
particle needs to pass the measurement volume. With a geod es
timate of the transit time; this weighting method is exact for

The cause of the velocity bias is the dependence of the dataconstant particle concentrations even for three-dimeasitrbu-

rate on the velocity (section 2.2). The distorted velocistribu-
tion of the measured LDA data (figure 5) exhibits other stiats
than the original flow field. The mean and the variance eséthat
from the LDA data set through
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with IV velocity samplesa:; have large deviations (figure 7).
The hat on top of the sign indicates the estimation of théssil
value.

With a weighting technique [4] with individual weights; for
each measured velocity valug

lence. But the estimation of the transit time from a LDA busst
very complicated. The time is quantified with the period o th
Doppler frequency, the signal can have a large noise levkttasn
effective size of the measurement volume depends on thielpart
size.

The most robust weighting technique is the arrival time \Weig
ing (w; = 1/At;) using the interarrival time between two parti-
clesAt; = t; — t;—1. The effectivity of the arrival time weighting
depends on the data rate. For high data rates the veloc#ydsa
appears. With lower data rates the effectivity becomeslsmalit
the direction of operation is always correct. Furthermainés is
the only weighting method that works with non-constant ipket
concentrations.

In the mid to late eighties a gradual rekindling of interest i
dynamic statistics like ACF or PSD took place as investigato
tried to use them as tools to study the small scales of tunbele
Comparative studies [30, 32] indicated that the early esttins
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Figure 8: The effect of the refinement for the sample-andthol
reconstruction

possessed a high degree of variance and a susceptibilitg-to v
locity bias. Even the age old sample-and-hold reconstrmabf
LDA data led to a filtered noise effect, which obscures théhig
frequency portion of the spectrum [1].

The results of statistical estimations from reconstrudtBé
data sets were found to be very sensitive to the reconstructi

method used and thus investigations to find the best method of

reconstruction [34, 31, 17, 18, 15] were started. A comparizf
several reconstruction methods [22] leads to the conaiusbiat all
have a similar behavior. The data rate was found to be the main
parameter, similar to the findings for the sample-and-hetobn-
struction in [1]. For high data rates the results are reéiakith
marginal differences between the reconstruction scheRardow

data rates all reconstruction methods have a low pass ¢barac
known as thedata rate filter that suppresses the higher frequen-
cies and leads to aliasing errors, where the different igtcoction
schemes have their individual filter characteristics.

In [1] a mathematical description of the filter function is-de
rived for the sample-and-hold reconstruction, that givesxpres-
sion of the ACF calculated from the reconstructed veloaityck
tion in terms of the true ACF. A similar expression for the géten
and-hold reconstruction in combination with an equidistasam-
pling is given in [23]. The equidistant resampling leads timear
data rate filter that can be inverted. The inverse filter candeel
to correct the ACF derived from the reconstruction.

The sample-and-hold reconstructed functid® (t) is resam-
pled with equidistant intervaldr. The ACF of the new data set

u{" = u" (A7) is given through
N k|

> uwluly @
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with the numberN (") of data points in the reconstructed and re-
sampled data set. The filtered ACF
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leads to a refined estimation, with the filter parametethat de-
pends only on the mean data rateNevertheless, the noise in the
LDA data set leads to a systematic error in the ACF and the PSD.
A method to estimate the noise power and to correct the etitima
is given in [25].

Figure 8 shows the ACF estimates using a sample-and-hold
reconstruction with and without that refinement. The retrois
tion without refinement shows significant systematic errdree
refinement is able to correct the effect of the particle rdterfi
completely.

The use of more complex reconstruction methods is possible
in principle, but the correction filter becomes unreasonabl

The second method with remarkable improvement in the last
few years is the slotting technique. In principle the atriimes
are quantified to get a quasi equidistant sampled data detaxgte
intervals without measurements. To derive the ACF the valer
between every two measurements is splitted into small Isinss)
of width Ar. The ACF is given through

ST wausbi(t; — t)

R(kAT) = —Z (10)
Z]i\{j:‘l b (t]‘ — ti)
i#j
with the mask function
! for (k—3)<Z < (k+13)
bi(r) = { 0  otherwise (11)

The use of cross products only#£ 5) leads to an estimation that
has no bias through the noise, because it is independenadbr e
velocity sample.

In the last few years two important improvements were devel-
oped for that technique, thecal normalization33] and thefuzzy
slotting techniqué24].

The local normalization uses an alternative normalizatimn
calculate correlation coefficientg ) et R(7)/R(0) through

A
o(kAT) = — 12
with

N
A = Z uiujbk(tj — ti) (13)

N
B = Y ulbu(t;—t) (14)

N
C = Z uf-bk(tj - ti) (15)

Instead of the normal norm factef this technique uses only these
velocity values for the estimation d®(0) that are used for the
estimationR(7). The ACF can be found with the facté? from
equation (4) or (6).
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The effect of this technique is a decreased variability ef ¢lti-
mate especially for large correlation coefficients.

R(kAT) = (16)
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Figure 9: Fuzzy Slotting Technique

normal slotcorrelation
ooooo with local normalization

< 10.06 eeeo® with fuzzy slotting technique

o
Y
EN

S
Y
N

.
L X}
o
poo
o

,..'.EUEHQQEBDDDD EQU;RHEQ,..“
DDDDDD

T I S T B

o
)
S

N . 4
autocorrelation variance [m®/s

—20 —10 10 20

time lag [ms]

Figure 10: The reduction of estimation’s variability thgbuthe
local normalizationand thefuzzy slotting technique

The fuzzy slotting technique uses a lag products weighting
scheme (figure 9) defined as

{1—|ﬁ—’f|
0

which allows lag products to contribute to two slots simuétausly
and weights lag products that lie close to the slot centeerheav-
ily. This leads to a reduced variability of the estimate anhthe
same time a reduced bias through the averaging within th& slo

In figure 10 the estimator’s variability is shown for the lbca
normalization and for the fuzzy slotting technigue in conigzan
to the normal slotting technique. While the local normaima
reduces the variability only for large correlation coeffitis close
to the time lag zero with very high effectivity the fuzzy glogy
technique is not as effective but it reduces the variablityany
time lag.

These results are confirmed by the recently perforbetth-
mark testg43] of spectral estimation from LDA data sets. Here the
idea was born to merge both techniques [19], producing a more
powerful estimator.

A further development of this technique is the implementati
of the weighting method with

for | & — k| <1
otherwise

bi (1) a7)

N
A = Z wiujwiw;iby (t; — t;)
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Figure 11: Distribution of the interarrival timg — ¢,_; for the
slotcorrelation withk A7 = 5 ms (simulation without processor
delay)
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and the variance estimagég from equation (6) to overcome the
velocity bias.

The use of the velocity weighting or the transit time weighti
is possible like for the statistical moments. Instead ofrthemal
arrival time weighting thdéorward-backward arrival time weight-
ing should be prefered with

for
for

and w; =tjy1 —t;
and w; = t]‘ —t];l

w; =t; —ti1
w; =tig1 —t;

Jj>i
i<i @D
because of the dependence of the interarrival time disioibwn
the calculated time lagAr (figure 11).

4. CONCLUSIONS

Due to its the physical working principle, the data procagsin
the laser Doppler anemometry is an application of stoahasiin-
pling. For many cases the adequate reconstruction of thevilew
locity function is a secondary task. The main task of LDA data
processing is the calculation of flow statistics. That caddree di-
rectly from the data set containing the information aboetghm-
pling statistics or via a reconstruction that preservessthsstics
or a reconstruction with a subsequent refinement that dsrtee
statistics calculated from the reconstructed function.

The uniqueness of LDA data processing is the very low data

rate, that is even depending on the velocity itself, the ispeam-
pling characteristics without an upper limit of intervalstiveen
the samples, and the possible drifting process parametéurshu-
lent flow fields.

The sample-and-hold reconstruction with its refinement and
direct spectral noise removal [25] and the slotcorrelatidth lo-
cal normalization and fuzzy slotting technique [19] in conation
with the forward-backward arrival time weighting are pofuées-
timators of the autocorrelation, that have a small estiomavari-
ability and that are very stable for several applications.
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Corrections

page 3, caption of figure 7: turbulence intensity/o2 /m.,
page 3, right column, last but one paragraphw; = At;



