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Abstract

This contribution reviews the estimation of spectra from laser

Doppler data and provides some recommended guidelines. It is
shown that reliable spectral estimates can be achieved for frequen-
cies well beyond the mean data rate. The estimators discussed
here exhibit some further advantages when used for processing
data from multi-point measurements, used for spatial correlations.
Some final remarks are directed towards the ramifications of these
procedures on the optical system design.

1 Introduction

Laser measurement techniques are par-
ticularly attractive in aerodynamic re-
search because they are both non-
intrusive and quantitative. The range
of available techniques has expanded
rapidly in recent years, as indicated in
Fig. 1. This figure uses a classification
according to components (u, v, w, dp)
and dimensions (z, y, 2, t) and has been
restricted to those techniques employing
elastic light scattering from tracer parti-
cles.

While multi-component techniques
such as PIV or DGV provide valuable
spatial information about the flowfield,
these techniques are generally quite
limited in their temporal resolution.
This limitation is closely coupled to the
readout speed of the CCD cameras used
for detection. From Fig. 1 it is evident
that at the present time only the laser
Doppler/phase Doppler techniques offer
this time resolution.

High time resolution can be important
in two respects. The first is to be able to

resolve instationary or periodic phenom-
ena and the second is to provide spec-
tral (or correlation) information about
the flow process. It is the latter feature,
which is the focus of the present paper.

Spectral estimation of flow velocity
fluctuations from laser Doppler data has
been a topic of discussion since the early
work of Mayo et al [15]. An historical
summary and also a review of the present
state-of-the-art has been published re-
cently by Benedict et al [4]. The es-
timation is not straightforward due to
several unique features of laser Doppler
data, which are briefly reviewed in sec-
tion 2. In sections 3.1.1 and 3.1.2 the
two most recommendable estimators are
presented, including some very recent
improvements. The situation becomes
one degree more complex when multi-
component or multi-point measurements
are involved and this is discussed in sec-
tion 3.2.

Spectral estimation is often a first step
to estimation of further quantities such
as length scales or dissipation. Section 4
shows how some of these quantities can
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DGV - Doppler global velocimetry
GPD - Global phase Doppler

LDV - Laser Doppler velocimetry
LFT - Laser Flow Tagging

LTV - Laser transit velocimetry

PD - Phase Doppler

PIV - Particle image velocimetry
PTV - Particle tracking velocimetry

Figure 1: Overview of laser measurement techniques for single and multi-phase flows

be computed.

2 Characteristics of Laser
Doppler Data

For the present discussion no details of
the laser Doppler technique itself will be
given. It is simply assumed that the de-
vice makes available a data set consisting
of up to three velocity components and
an arrival time for every tracer particle
in the flow which has been detected and
validated. Thus, primarily only process-
ing algorithms (software) are considered.

The laser Doppler technique gives a
transient history of velocity values de-
rived from individual particles that cross
the measurement volume. For each veloc-
ity measurement there exists an arrival
time of the corresponding particle. The
laser Doppler data set represents a series
of time-velocity pairs.

2.1 Stochastic sampling

The most important feature of the laser
Doppler data set arises from the fact that
the technique is a tracer-based method,
hence the data sample arival times are
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Figure 2: Stochastic sampling with a
laser Doppler instrument

irregular. In [6, 7] investigations on the
sampling statistics have been presented.
Presuming an equal particle distribution
in space with a constant concentration
cs, the intervals At between the measure-
ments are distributed exponentially

p(At) = ne A

(1)

with the mean data rate n (Figure 2).
The exponential distribution means
that regardless of how low the mean data
rate is, the most probable time between
samples remains zero. Principally, in-
formation about high frequency velocity
fluctuations is therefore always available.
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Figure 3: Velocity distribution of the

original flow field compared to the data
set (1 dimensional simulation)

2.2 Correlation between veloc-
ity and data rate

For non-constant velocities the instanta-
neous data rate is not constant in spite
of a constant particle concentration cs.
Presuming a constant spatial distribution
of tracer particles the fluid or gas vol-
ume that passes the measurement vol-
ume within a given time is proportional
to the velocity, hence the rate of measure-
ments is proportional to the velocity as
well. This leads to a more frequent oc-
currence of high velocity measurements
and to a distorted velocity distribution,
called velocity bias. This effect is shown
schematically in Figure 3.

Furthermore, the data rate depends on
the size of the measurement volume. It
is proportional to the projected area A |
of the measurement volume normal to
the flow velocity vector. Because of the
significant prolate shape of the measure-
ment volume, the size of the projection
depends on the direction of the flow. An
expression of the variable data rate is
given through

—

i = A (@) | (2)
which describes the correlation of the
data rate and the velocity [21]. Conse-
quently, the sampling scheme depends on

10000 -
—
@,
>
G
c
[
0O 1000 4
= 3
£
©
Qo
[
o

100 T T T T T T

0 50 100 150 200 250 300 350
Interarrival Time [us]

Figure 4: Distribution of interarrival

times (measurement)

the measured velocity value.

2.3 Processor delay

The velocity measurements ensue nor-
mally from single particles. If two
particles enter the measurement volume
within a short time interval, the burst
signals overlap. Because of the phase dif-
ference of the bursts a phase drift can
be seen within the double burst signal.
Therefore, the burst frequency cannot be
derived exactly. These multi-particle sig-
nals are detected by pre-processors that
often reject them from the data stream.
This leads to a significant underrepresen-
tation of small interarrival times (Fig-
ure 4). Note that even modern and fast
processors cannot avoid the delay time,
since it is given by the optical setup
through the simple approximation

darv
tdel — —
u

(3)

using the diameter of the measurement
volume dyry and the mean velocity .

2.4 Noise

There are numerous sources of noise both
in the velocity values registered as well
as in the arrival times. These include
the stochastic nature of light generation,
scattering and detection [15], electronic



noise [5] and also noise due to the ran-
dom arrival of particles in the detection
volume [11]. Noise in the processed sig-
nal leads to fluctuations in the measured
velocity values, which cannot be distigu-
ished from turbulent flow fluctuations.
However, it is generally assumed that ve-
locity fluctuations due to noise are ran-
dom in nature, i.e. lead to white noise
in the spectral domain of velocity fluctu-
ations.

3 Estimation of correla-
tion and power spectral
density functions

3.1 One-point, one-component

measurements

The fact that, due to the exponetially dis-
tributed interarrival times, velocity infor-
mation is often available over very short
time spans, suggests that principally, in-
formation about very high frequency fluc-
tuations is contained in the data. This is
in strong contrast to data which is sam-
pled at equal time intervals, for which the
sampling theorem applies and for which
no information above the Nyquist fre-
quency (f. = ﬁ, At sample interval) is
available. This, incidently, was the moti-
vation for a series of articles investigating
the possibility of a direct Fourier trans-
form of the laser Doppler data to obtain
a PSD (power spetral density) estimate,
i.e. a transform without exploiting the
FFT [9, 10, 28].

However, the prospect of alias-free
PSD estimators at frequencies beyond
the mean Nyquist frequency (f. = n/2)
through use of a direct transform did
not meet expectations. Basically the
variability of the estimator increased too
quickly with frequency, so that while an
estimation could formally be performed
at high frequencies, the answer was ex-
tremely unreliable. In [31] Tummers and
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Figure 5: The “particle-rate filter” and
the refinement using the SH reconstruc-
tion (simulation)

Passchier have shown that its variabil-
ity, even with block averaging, is no bet-
ter than the slotting algorithm discussed
below. Furthermore, even with further
modifications [30, 27, 29, 20], the estima-
tion variance is larger then the variance
of the slotting technique or the refined re-
construction. This estimator is therefore
not pursued there and is only presented
occasionally in the literature as a com-
parison.

3.1.1 Reconstruction

Reconstruction approaches create
equidistant spaced time series by resam-
pling according to various interpolation
schemes, thereby allowing an FFT to
be used in making PSD estimates.
The most common scheme by far is
the sample-and-hold (zero-order, SH)
This is the simplest of
the polynomial class of reconstruction
algorithms. The limits of the reconstruc-
tion technique are given through the
data rate, since the reconstruction from
irregularly sampled data sets has a filter
characteristic [1] (figure 5). It has been
well documented that the filter effect
becomes significant at frequencies even
under /27 [18]. Recently, a refinement
was developed that cancels the filter

reconstruction.



effect associated with reconstruction
techniques [25] (figure 5). The approach
is to derive an expression for the resam-
pled ACF in terms of the true ACF. The
relation is then inverted to improve the
ACF estimation. In the case of the SH
reconstruction the refinement becomes

very simple

Ry, fork=0
Ri=1 (2c+1) AZ_C<A271+RZ+1) (4)
fork=1...K
—nAT
c=— (5)

(1 — e—nAT)?

where R is the refined ACF estimate
based on the ACF R’ of the reconstructed
and resampled time signal. In princi-
ple, a refinement can be derived for any
reconstruction algorithm. Other recon-
struction techniques, such as single expo-
nential reconstruction [14], other propor-
tional one-point reconstructions [25] or
even the linear reconstruction, and their
refinement filters have been investigated.
The results are similar and the algorithm
is effective enough with the SH recon-
struction that the advantages of other re-
construction schemes become negligible.
Therefore, the SH reconstruction is suf-
ficient and furthermore, the refinement
filter becomes very simple only for this
reconstruction scheme.

The influence of the velocity bias on
the results of the reconstruction tech-
nique is small (at least for quite high data
rates), because the reconstruction values
with large interarrival times are resam-
pled more often than values with smaller
interarrival times. This principle is simi-
lar to the arrival time weighting [2].

However, the noise and the processor
delay affect the statistics of this estima-
tor. Especially the value Ry of the ACF
at lag time zero is obscured by these ef-
fects. To remove the noise and the effect
of the processor delay from the ACF es-
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Figure 6: The effect of the data noise
and the processor delay on the PSD and
the result with the model-based variance
estimation using the reconstruction algo-
rithm (simulation)

timate, a model-based estimation of Ry
can be used. Principally speaking, sim-
ple and convenient models [17, 22] can be
used. Nevertheless, the parameter opti-
mization is difficult and costly. The use
of a weighting function with strong co-
efficients close to the lag time zero al-
lows simpler models to be used. In [19] a
Gaussian function and in [4] a more flex-
ible version with an additional param-
eter was used as a model of the ACF.
These models correspond to the Taylor
microscale estimation (parabolic behav-
ior of R near 7 = 0). However, these
models are not able to describe periodic
components, so that the weighting func-
tion should decrease very strong with the
lag time. Figure 6 shows the effect of the
model-based variance estimation.

The corrected ACF estimate can be
transformed to the PSD using the dis-
crete cosine transform

8 = 8(%)) :s(QKJA> _9ar

K-1
X R[] + 2 Z Rk COS(QFfjkAT)
k=1

+(_1)jRK}

(6)

Alternatively, in [31] a frequency de-



pendent variable windowing of the ACF
is recommended for the transform to the
PSD

S(f) = 2A7 [RO

+2 > di(f) Ry cos(2m fEAT) | (7)

with windowing coefficients dj(f), which
vary with the frequency f. Good ex-
perience was obtained using the Tukey-
Hanning window with

% + %cos (”kaT>

K

for |fEAT| < K

0 otherwise

di.(f) = (8)

The parameter s can be chosen arbitrar-
ily, e.g. kK = 6 was found to yield good
results.

This technique reduces the estimation
variance especially for higher frequencies,
while through the windowing a leakage
effect arises. However, now the spec-
trum can be calculated at any frequency.
This could reduce the number of required
spectral lines in the case of a logarith-
mic axis scaling, which is often used to
present turbulence spectra. This is im-
portant because the the FFT cannot be
used for this transform and every spectral
value has to be calculated independently.

Recently, the capability of the refined
reconstruction algorithm was demon-
strated using experimental data taken
behind a grind in a wind tunnel [12]. The
algorithm could be verified to be bias free
and to be able to recover the PSD up to
frequencies much higher than the mean
data rate.

3.1.2 Slotcorrelation

To reduce the variability of the original
slotting algorithm [15], the local normal-
ization [19] and the fuzzy slotting tech-
nique [26] were combined to a more pow-

erful algorithm [16]. Additionally, the al-
gorithm was extended by weighting algo-
rithms [24] known from the estimation of
statistical values like the mean velocity or
the variance [8]. The advantage of this al-
gorithm is the very low variability of the
estimate and the possibility of reducing
the influence of the velocity bias by sev-
eral, different weighting techniques.

Every combination of two samples u;
and u; of the data series taken at the
times ¢; and ¢; is processed for each time
lag kAT (k=0...K) using

2A

~ O'u
Ry = JBC (9)
with
N-1 N
A= Z Z uiujwiwjbk(tj — till())
=1 j=i+1
N-1 N
B = Z Z u?wiwjbk(tj —ti) (11)
=1 j=i+1
N-1 N
C = Z u?wiwjbk(tj —ti) (12)

Il
_
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+

J=1

and with the fuzzy mask function

ti—t;
1— |4k g
bi(tj—t;) = for —tjA_:i — k‘ <1
0 otherwise

(13)
The estimate of the velocity variance is
obtained using

N 2.
121: Zi:luzlez‘ (14)

with the weighting factors w;.

To obtain the weighting factors several
schemes can be used. Example weighting
factors, w;, are the transit time weighting
13]

w; = TT; (15)

or the arrival time weighting [2]

w; = t; —ti—1 (16)



with the arrival time ¢; of the velocity
sample u;, which is independent of the
particle distribution [8]. Both of these
weighting functions are found to yield
non-biased results for accurate measure-
ments of the transit time (transit time
weighting) or sufficiently high data den-
sities (interarrival time weighting).

Note that the estimation of the cor-
relation function (Eq. (9)) in the case
of interarrival time weighting requires
a revised scheme, the forward-backward
weighting [24]

w; = t;—ti—1
wj =t~
because of the correlation between the
time lag and the arrival time distribution.

In principal, also a velocity weighting
[21] can be used. however, it was found
to be very sensitive to the noise in the
data set.

Since self-products are not taken, the
A value in the numerator of equation (9)
is independent of the data noise. How-
ever, the coefficients in the denuminator
include self-products and are affected by
the data noise. Furthermore, also the
processor delay influences the estimation
results. Therefore, the model-based vari-
ance estimation used for the refined re-
construction can be used here to improve
the results of the slotting algorithm. The
transform to the PSD is similar to the
procedure given for the refined recon-
struction. It can be performed either
without or with the variable windowing
technique to improve the spectrum.

3.2 Multi-component /multi-
point measurements

The slotting technique and the refined re-
construction have been modified to es-
timate also the cross-correlation func-
tion (CCF) and the cross-power spectral
density (CPSD) from multi-channel laser

Doppler measurements [23, 26]. Both ar-
rangements of measurment volumes are
possible, the multi-component and the
multi-point configuration.

In the multi-component configuration
the measurement volumes overlap, yield-
ing different velocity components of the
flow at a common location. The cross-
correlation of the different velocity com-
ponents represent components of the
Reynolds shear stress tensor.

Normally, the data of the two or more
individual laser Doppler systems are ac-
cepted only if the measurements of all ve-
locity components occur within a small
time window (coincidence). Then the in-
dividual velocity measurements can be
assigned to one particle and the veloc-
ity vector of each particle can be trans-
formed to any other coordinate system.

In [23] a coordinate transform is
derived also for free-running multi-
component measurements without coin-
cidence. In that case, first the CCF must
be calculated in the coordinates of the
measurement system. The transform to
another coordinate system can then be
done only for the CCF, not for the indi-
vidual particles.

The CCF can be calculated from the
data sets either with the slotting or the
reconstruction technique. Both tech-
niques can be easily adapted to mea-
surements in either the free-running or
the coincidence mode. The advantage
of the free-running mode is the higher
data rate, since all particles are accepted
passing at least one of the measurement
volumes, while with the requirement of
coincidence, only particles are validated
which pass through all measurement vol-
umes. On the other hand, the coinci-
dence reduces the effective size of the
measurement volume, leading to a higher
spatial resolution of the system, while
without the coincidence the velocities are
averaged over the union of all individual



measurement volumes.

If a two-point or multi-point laser
Doppler system is considered, the cor-
relations represent spatial correlations.
Most commonly, these correlations be-
tween velocity fluctuations are evaluated
at lag time zero (covariance or after nor-
malization correlation coefficient), how-
ever in principle all lag times can be
considered, in which case the correlation
function or space-time correlation func-
tion between velocity fluctuations can be
obtained.

There are three basic deficiencies in
present laser Doppler systems which can
be eliminated using the new estimators
for cross-correlations. The first concerns
the need for coincidence. Conventional
estimators of the cross-correlation func-
tion work directly from the definition

N
Rap(r) = %ZUA(ti)UB(ti +7) (19)
i=1

whereby it is understood that the mean
has been removed from the input signals
uys and ug. Thus a product uqupg can
only contribute to the sum if velocity in-
formation from the two channels come
with a lag time of exactly 7. Practically,
an acceptance window in time (coinci-
dence window) is tolerated, however in
many applications this window must be
chosen very narrow to avoid a loss of cor-
relation, hence a biased estimator. Phys-
ically, the required window width will be
dictated by the time correlation function
itself, and must often be chosen empiri-
cally and/or iteratively.

In any case, given a narrow coincidence
window, the data rate of coincident veloc-
ity pairs may become very low, especially
for spatially separated measurement vol-
umes. Thus, the duration of the measure-
ment to achieve a statistically satisfac-
tory number of samples N may become
intolerably long. Accepting a lower value

Figure 7: Two-point configuration lead-
ing to spatial bias of the cross-correlation
funtion.

of N simply increases the variance of the
estimate.

A second deficiency concerns the coin-
cidence window implementation, which is
available at the hardware level only for
7 = 0. In this case only data pairs which
occur simultaneous in time are actively
acquired, minimizing the amount of col-
lected data. For other time lags (7 # 0)
no hardware coincidence is forseen. If
the function Rap(7) is to be evaluated
at many 7 values, then all data must be
acquired from both channels and coinci-
dence must be implemented at the soft-
ware level. In this case, again, due to the
generally lower ‘hit’ rate of coincidence,
large amounts of data must be acquired
and recorded to yield statistically secure
estimates.

A final difficulty with present esti-
mators has been pointed out by Bene-
dict and Gould [3] in their discussion of
two-point correlation estimates when the
separation distance becomes very small.
Such measurements are necessary if di-
rect measurements of dissipation are to
be attempted. Once the two measure-
ment volumes begin to overlap any g-
type correlation will become biased be-
cause coincidence will be triggered when
a single particle passes through the over-
lapping region, as illustrated in figure 7.
However velocity data from the two chan-
nels does not originate from the sur-
mised spatial separation of Ay, but with
an effective spatial separation of zero.
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Thus the estimator using coincidence will
lead to a spatial bias in the near-field
region. This bias is very significant,
since the number of single particle, two-
channel signals is much larger than for
two-particle, two-channel coincident sig-
nals. All of the above difficulties will be
alleviated using the reconstruction or the
slotting method for multi-channel mea-
surements in the free-running mode. Fur-
thermore, if necessary, coordinate trans-
forms can be performed with the derived
correlation functions.

Some example results of f- and g-type
correlations using various estimators are
given in figures 8 and 9 respectively.

4 Further derivations

4.1 Length scales and dissipa-

tion rate

The obtained correlation functions and
the turbulence spectra can be used to de-
rive several time and length scales and
also the dissipation rate. This requires
spatial correlations and the correspond-
ing wave number spectra, which can be
obtained directly using multi-point mea-
surements. Temporal correlation func-
tions and power spectra from single-point
measurements first have to be trans-
formed to spatial functions using the
Taylor hypothesis

kK o= = (20)
U
r = ut (21)
with the wave number x = QT”, the cir-

cular frequency w = 27 f, the spatial dis-
tance r, the time ¢ and the mean velocity
u, leading to the expressions

E() = E (#

R,(r) = Rt< )

T
U

) = 5=6U) (22

s

(23)

with the wave number spectrum FE(k),
the power spectrum G(f), the spatial and
the temporal correlation functions R, (r)
and R;(7) with

and the expectation ().
For isotropic turbulence and stream-
wise laser Doppler mesurements, the fit

E(k) = 0.49¢%/3 575/ (28)



to the inertial subrange of the wave num-
ber spectrum can be used to estimate the
dissipation rate of turbulent kinetic en-
ergy per unit mass, e.

From a parabolic fit to the spatial cor-
relation function at £ = 0 the Taylor
length scale Ay (f-type for streamwise
measurements) can be computed using

o __2w?) _  R(0)
TR

Then the dissipation rate can be esti-
mated using

(u')

e = 30v 5
Af

(30)

with the kinematic viscosity v.
Finally, the dissipation rate can be es-
timated from the integral length scale

1 oo
using
k3/2

and with the turbulent kinetic energy

k= §<ul2>

5 (33)

Note that all these expressions are
valid only for isotropic turbulence, small
turbulence levels and measurements of
the streamwise velocity component.

4.2 Spectral Limits

The discussion in section 3 indicates that
the choice of spectral estimator greatly
influences the maximum frequency to
which the PSD can be reliably estimated.
Whereas equally spaced samples yield
estimates only up to the Nyquist fre-
quency, i.e. half of the sample rate, the
situation with irregularly sampled data
is quite variant. A simple sample-and

hold reconstruction with re-sampling al-
lows estimates up to n/2w. The more
advanced estimators can extend this to
several times n. However n, the mean
data rate, can be increased by either in-
creasing the tracer particle density or
by enlarging the measurement detection
volume of the system. In both cases,
the probability of obtaining two particles
simultaneously in the detection volume
must be kept low.

Given that this probability is to remain
less than 0.5 % and assuming a Poisson
distribution, the Poisson parameter N,
expressing the mean number of particles
simultaneously in the volume, i.e.

NN
= me
must satisfy N < 0.1. If Vj is the mea-
surement volume, then the allowable con-
centration ¢, (particles/m3) becomes

-N

P(N,N) (34)

(35)

On the other hand, ¢; must be chosen
large enough to yield the required mean
data rate to estimate the spectrum at the
desired maximum frequency fmax. As-
suming fmax < 7 (conservative) and us-
ing Eq. (2)

”;L fmax
Cs = r > -
1u AJ_U

Since the right-hand side of Eq. (36) must
always be less than that of Eq. (35)
GA,L

0.3u
«<0l— = —
fma Vo T4

(36)

(37)

for an elliptical volume where r4 is the
radius of the ellipsoidal detection volume
and a one-dimensional flow is assumed.
This indicates that the spectral limit in
frequency is determined by the dimen-
sions of the measurement volume and the
mean velocity and that a corresponding
particle density must be chosen to attain
this limit.



5 Conclusion

The procedures for estimating power
spectral density, autocorrelation function
and various quantities derived from these
functions from laser Doppler data has
been reviewed. Two spectral estima-
tors for single-component, single-point
systems have been reviewed. Some re-
marks about how these estimators can be
extended to multi-component or multi-
point measurements have been made. Fi-
nally, the consequences of using these
improved estimation procedures on the
layout of the optical system have been
briefly discussed.
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