
Turbulent Veloity Spetra from LaserDoppler DataC. Tropea�, H. Nobah�, A. Ramondy, Ph. Reulety�Tehnial University DarmstadtyONERAAbstrat This ontribution reviews the estimation of spetra from laserDoppler data and provides some reommended guidelines. It isshown that reliable spetral estimates an be ahieved for frequen-ies well beyond the mean data rate. The estimators disussedhere exhibit some further advantages when used for proessingdata from multi-point measurements, used for spatial orrelations.Some �nal remarks are direted towards the rami�ations of theseproedures on the optial system design.1 IntrodutionLaser measurement tehniques are par-tiularly attrative in aerodynami re-searh beause they are both non-intrusive and quantitative. The rangeof available tehniques has expandedrapidly in reent years, as indiated inFig. 1. This �gure uses a lassi�ationaording to omponents (u, v, w, dp)and dimensions (x, y, z, t) and has beenrestrited to those tehniques employingelasti light sattering from traer parti-les.While multi-omponent tehniquessuh as PIV or DGV provide valuablespatial information about the ow�eld,these tehniques are generally quitelimited in their temporal resolution.This limitation is losely oupled to thereadout speed of the CCD ameras usedfor detetion. From Fig. 1 it is evidentthat at the present time only the laserDoppler/phase Doppler tehniques o�erthis time resolution.High time resolution an be importantin two respets. The �rst is to be able to

resolve instationary or periodi phenom-ena and the seond is to provide spe-tral (or orrelation) information aboutthe ow proess. It is the latter feature,whih is the fous of the present paper.Spetral estimation of ow veloityutuations from laser Doppler data hasbeen a topi of disussion sine the earlywork of Mayo et al [15℄. An historialsummary and also a review of the presentstate-of-the-art has been published re-ently by Benedit et al [4℄. The es-timation is not straightforward due toseveral unique features of laser Dopplerdata, whih are briey reviewed in se-tion 2. In setions 3.1.1 and 3.1.2 thetwo most reommendable estimators arepresented, inluding some very reentimprovements. The situation beomesone degree more omplex when multi-omponent or multi-point measurementsare involved and this is disussed in se-tion 3.2.Spetral estimation is often a �rst stepto estimation of further quantities suhas length sales or dissipation. Setion 4shows how some of these quantities an
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Figure 1: Overview of laser measurement tehniques for single and multi-phase owsbe omputed.2 Charateristis of LaserDoppler DataFor the present disussion no details ofthe laser Doppler tehnique itself will begiven. It is simply assumed that the de-vie makes available a data set onsistingof up to three veloity omponents andan arrival time for every traer partilein the ow whih has been deteted andvalidated. Thus, primarily only proess-ing algorithms (software) are onsidered.The laser Doppler tehnique gives atransient history of veloity values de-rived from individual partiles that rossthe measurement volume. For eah velo-ity measurement there exists an arrivaltime of the orresponding partile. Thelaser Doppler data set represents a seriesof time-veloity pairs.2.1 Stohasti samplingThe most important feature of the laserDoppler data set arises from the fat thatthe tehnique is a traer-based method,hene the data sample arival times are

5

5.5

6

6.5

7

7.5

8

8.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ve
lo

ci
ty

 [m
/s

]

time [ms]Figure 2: Stohasti sampling with alaser Doppler instrumentirregular. In [6, 7℄ investigations on thesampling statistis have been presented.Presuming an equal partile distributionin spae with a onstant onentrations, the intervals �t between the measure-ments are distributed exponentiallyp(�t) = _ne� _n�t (1)with the mean data rate _n (Figure 2).The exponential distribution meansthat regardless of how low the mean datarate is, the most probable time betweensamples remains zero. Prinipally, in-formation about high frequeny veloityutuations is therefore always available.
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Figure 3: Veloity distribution of theoriginal ow �eld ompared to the dataset (1 dimensional simulation)2.2 Correlation between velo-ity and data rateFor non-onstant veloities the instanta-neous data rate is not onstant in spiteof a onstant partile onentration s.Presuming a onstant spatial distributionof traer partiles the uid or gas vol-ume that passes the measurement vol-ume within a given time is proportionalto the veloity, hene the rate of measure-ments is proportional to the veloity aswell. This leads to a more frequent o-urrene of high veloity measurementsand to a distorted veloity distribution,alled veloity bias. This e�et is shownshematially in Figure 3.Furthermore, the data rate depends onthe size of the measurement volume. Itis proportional to the projeted area A?of the measurement volume normal tothe ow veloity vetor. Beause of thesigni�ant prolate shape of the measure-ment volume, the size of the projetiondepends on the diretion of the ow. Anexpression of the variable data rate isgiven through_n = sA?(~u) j~uj (2)whih desribes the orrelation of thedata rate and the veloity [21℄. Conse-quently, the sampling sheme depends on
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Interarrival Time [µs]Figure 4: Distribution of interarrivaltimes (measurement)the measured veloity value.2.3 Proessor delayThe veloity measurements ensue nor-mally from single partiles. If twopartiles enter the measurement volumewithin a short time interval, the burstsignals overlap. Beause of the phase dif-ferene of the bursts a phase drift anbe seen within the double burst signal.Therefore, the burst frequeny annot bederived exatly. These multi-partile sig-nals are deteted by pre-proessors thatoften rejet them from the data stream.This leads to a signi�ant underrepresen-tation of small interarrival times (Fig-ure 4). Note that even modern and fastproessors annot avoid the delay time,sine it is given by the optial setupthrough the simple approximationtdel = dMV�u (3)using the diameter of the measurementvolume dMV and the mean veloity �u.2.4 NoiseThere are numerous soures of noise bothin the veloity values registered as wellas in the arrival times. These inludethe stohasti nature of light generation,sattering and detetion [15℄, eletroni



noise [5℄ and also noise due to the ran-dom arrival of partiles in the detetionvolume [11℄. Noise in the proessed sig-nal leads to utuations in the measuredveloity values, whih annot be distigu-ished from turbulent ow utuations.However, it is generally assumed that ve-loity utuations due to noise are ran-dom in nature, i. e. lead to white noisein the spetral domain of veloity utu-ations.3 Estimation of orrela-tion and power spetraldensity funtions3.1 One-point, one-omponentmeasurementsThe fat that, due to the exponetially dis-tributed interarrival times, veloity infor-mation is often available over very shorttime spans, suggests that prinipally, in-formation about very high frequeny u-tuations is ontained in the data. This isin strong ontrast to data whih is sam-pled at equal time intervals, for whih thesampling theorem applies and for whihno information above the Nyquist fre-queny (f = 12�t , �t sample interval) isavailable. This, inidently, was the moti-vation for a series of artiles investigatingthe possibility of a diret Fourier trans-form of the laser Doppler data to obtaina PSD (power spetral density) estimate,i. e. a transform without exploiting theFFT [9, 10, 28℄.However, the prospet of alias-freePSD estimators at frequenies beyondthe mean Nyquist frequeny (f = _n=2)through use of a diret transform didnot meet expetations. Basially thevariability of the estimator inreased tooquikly with frequeny, so that while anestimation ould formally be performedat high frequenies, the answer was ex-tremely unreliable. In [31℄ Tummers and
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Figure 5: The \partile-rate �lter" andthe re�nement using the SH reonstru-tion (simulation)Passhier have shown that its variabil-ity, even with blok averaging, is no bet-ter than the slotting algorithm disussedbelow. Furthermore, even with furthermodi�ations [30, 27, 29, 20℄, the estima-tion variane is larger then the varianeof the slotting tehnique or the re�ned re-onstrution. This estimator is thereforenot pursued there and is only presentedoasionally in the literature as a om-parison.3.1.1 ReonstrutionReonstrution approahes reateequidistant spaed time series by resam-pling aording to various interpolationshemes, thereby allowing an FFT tobe used in making PSD estimates.The most ommon sheme by far isthe sample-and-hold (zero-order, SH)reonstrution. This is the simplest ofthe polynomial lass of reonstrutionalgorithms. The limits of the reonstru-tion tehnique are given through thedata rate, sine the reonstrution fromirregularly sampled data sets has a �lterharateristi [1℄ (�gure 5). It has beenwell doumented that the �lter e�etbeomes signi�ant at frequenies evenunder _n=2� [18℄. Reently, a re�nementwas developed that anels the �lter



e�et assoiated with reonstrutiontehniques [25℄ (�gure 5). The approahis to derive an expression for the resam-pled ACF in terms of the true ACF. Therelation is then inverted to improve theACF estimation. In the ase of the SHreonstrution the re�nement beomesvery simpleR̂k =8>><>>:R̂00 for k = 0(2+ 1)R̂0k��R̂0k�1+R̂0k+1�for k = 1 : : : K (4)= e� _n��(1� e� _n�� )2 (5)where R̂ is the re�ned ACF estimatebased on the ACF R̂0 of the reonstrutedand resampled time signal. In prini-ple, a re�nement an be derived for anyreonstrution algorithm. Other reon-strution tehniques, suh as single expo-nential reonstrution [14℄, other propor-tional one-point reonstrutions [25℄ oreven the linear reonstrution, and theirre�nement �lters have been investigated.The results are similar and the algorithmis e�etive enough with the SH reon-strution that the advantages of other re-onstrution shemes beome negligible.Therefore, the SH reonstrution is suf-�ient and furthermore, the re�nement�lter beomes very simple only for thisreonstrution sheme.The inuene of the veloity bias onthe results of the reonstrution teh-nique is small (at least for quite high datarates), beause the reonstrution valueswith large interarrival times are resam-pled more often than values with smallerinterarrival times. This priniple is simi-lar to the arrival time weighting [2℄.However, the noise and the proessordelay a�et the statistis of this estima-tor. Espeially the value R̂0 of the ACFat lag time zero is obsured by these ef-fets. To remove the noise and the e�etof the proessor delay from the ACF es-
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Figure 6: The e�et of the data noiseand the proessor delay on the PSD andthe result with the model-based varianeestimation using the reonstrution algo-rithm (simulation)timate, a model-based estimation of R̂0an be used. Prinipally speaking, sim-ple and onvenient models [17, 22℄ an beused. Nevertheless, the parameter opti-mization is diÆult and ostly. The useof a weighting funtion with strong o-eÆients lose to the lag time zero al-lows simpler models to be used. In [19℄ aGaussian funtion and in [4℄ a more ex-ible version with an additional param-eter was used as a model of the ACF.These models orrespond to the Taylormirosale estimation (paraboli behav-ior of R near � = 0). However, thesemodels are not able to desribe periodiomponents, so that the weighting fun-tion should derease very strong with thelag time. Figure 6 shows the e�et of themodel-based variane estimation.The orreted ACF estimate an betransformed to the PSD using the dis-rete osine transformŜj = Ŝ(fj) = Ŝ� j2K��� = 2���"R̂0 + 2K�1Xk=1 R̂k os(2�fjk��)+(�1)jR̂Ki (6)Alternatively, in [31℄ a frequeny de-



pendent variable windowing of the ACFis reommended for the transform to thePSD Ŝ(f) = 2�� hR̂0+2K�1Xk=1 dk(f)R̂k os(2�fk��)#(7)with windowing oeÆients dk(f), whihvary with the frequeny f . Good ex-periene was obtained using the Tukey-Hanning window withdk(f) = 8>><>>:12 + 12 os��fk��� �for jfk�� j < �0 otherwise (8)The parameter � an be hosen arbitrar-ily, e. g. � = 6 was found to yield goodresults.This tehnique redues the estimationvariane espeially for higher frequenies,while through the windowing a leakagee�et arises. However, now the spe-trum an be alulated at any frequeny.This ould redue the number of requiredspetral lines in the ase of a logarith-mi axis saling, whih is often used topresent turbulene spetra. This is im-portant beause the the FFT annot beused for this transform and every spetralvalue has to be alulated independently.Reently, the apability of the re�nedreonstrution algorithm was demon-strated using experimental data takenbehind a grind in a wind tunnel [12℄. Thealgorithm ould be veri�ed to be bias freeand to be able to reover the PSD up tofrequenies muh higher than the meandata rate.3.1.2 SlotorrelationTo redue the variability of the originalslotting algorithm [15℄, the loal normal-ization [19℄ and the fuzzy slotting teh-nique [26℄ were ombined to a more pow-

erful algorithm [16℄. Additionally, the al-gorithm was extended by weighting algo-rithms [24℄ known from the estimation ofstatistial values like the mean veloity orthe variane [8℄. The advantage of this al-gorithm is the very low variability of theestimate and the possibility of reduingthe inuene of the veloity bias by sev-eral, di�erent weighting tehniques.Every ombination of two samples uiand uj of the data series taken at thetimes ti and tj is proessed for eah timelag k�� (k = 0 : : : K) usingR̂k = �̂2uApBC (9)withA = N�1Xi=1 NXj=i+1uiujwiwjbk(tj � ti)(10)B = N�1Xi=1 NXj=i+1u2iwiwjbk(tj � ti) (11)C = N�1Xi=1 NXj=i+1u2jwiwjbk(tj � ti) (12)and with the fuzzy mask funtionbk(tj�ti) = 8>><>>:1� ��� tj�ti�� � k���for ��� tj�ti�� � k��� < 10 otherwise (13)The estimate of the veloity variane isobtained using�̂2u = PNi=1 u2iwiPNi=1 wi : (14)with the weighting fators wi.To obtain the weighting fators severalshemes an be used. Example weightingfators, wi, are the transit time weighting[13℄ wi = TTi (15)or the arrival time weighting [2℄wi = ti � ti�1 (16)



with the arrival time ti of the veloitysample ui, whih is independent of thepartile distribution [8℄. Both of theseweighting funtions are found to yieldnon-biased results for aurate measure-ments of the transit time (transit timeweighting) or suÆiently high data den-sities (interarrival time weighting).Note that the estimation of the or-relation funtion (Eq. (9)) in the aseof interarrival time weighting requiresa revised sheme, the forward-bakwardweighting [24℄wi = ti � ti�1 (17)wj = tj+1 � tj (18)beause of the orrelation between thetime lag and the arrival time distribution.In prinipal, also a veloity weighting[21℄ an be used. however, it was foundto be very sensitive to the noise in thedata set.Sine self-produts are not taken, theA value in the numerator of equation (9)is independent of the data noise. How-ever, the oeÆients in the denuminatorinlude self-produts and are a�eted bythe data noise. Furthermore, also theproessor delay inuenes the estimationresults. Therefore, the model-based vari-ane estimation used for the re�ned re-onstrution an be used here to improvethe results of the slotting algorithm. Thetransform to the PSD is similar to theproedure given for the re�ned reon-strution. It an be performed eitherwithout or with the variable windowingtehnique to improve the spetrum.3.2 Multi-omponent/multi-point measurementsThe slotting tehnique and the re�ned re-onstrution have been modi�ed to es-timate also the ross-orrelation fun-tion (CCF) and the ross-power spetraldensity (CPSD) from multi-hannel laser

Doppler measurements [23, 26℄. Both ar-rangements of measurment volumes arepossible, the multi-omponent and themulti-point on�guration.In the multi-omponent on�gurationthe measurement volumes overlap, yield-ing di�erent veloity omponents of theow at a ommon loation. The ross-orrelation of the di�erent veloity om-ponents represent omponents of theReynolds shear stress tensor.Normally, the data of the two or moreindividual laser Doppler systems are a-epted only if the measurements of all ve-loity omponents our within a smalltime window (oinidene). Then the in-dividual veloity measurements an beassigned to one partile and the velo-ity vetor of eah partile an be trans-formed to any other oordinate system.In [23℄ a oordinate transform isderived also for free-running multi-omponent measurements without oin-idene. In that ase, �rst the CCF mustbe alulated in the oordinates of themeasurement system. The transform toanother oordinate system an then bedone only for the CCF, not for the indi-vidual partiles.The CCF an be alulated from thedata sets either with the slotting or thereonstrution tehnique. Both teh-niques an be easily adapted to mea-surements in either the free-running orthe oinidene mode. The advantageof the free-running mode is the higherdata rate, sine all partiles are aeptedpassing at least one of the measurementvolumes, while with the requirement ofoinidene, only partiles are validatedwhih pass through all measurement vol-umes. On the other hand, the oini-dene redues the e�etive size of themeasurement volume, leading to a higherspatial resolution of the system, whilewithout the oinidene the veloities areaveraged over the union of all individual



measurement volumes.If a two-point or multi-point laserDoppler system is onsidered, the or-relations represent spatial orrelations.Most ommonly, these orrelations be-tween veloity utuations are evaluatedat lag time zero (ovariane or after nor-malization orrelation oeÆient), how-ever in priniple all lag times an beonsidered, in whih ase the orrelationfuntion or spae-time orrelation fun-tion between veloity utuations an beobtained.There are three basi de�ienies inpresent laser Doppler systems whih anbe eliminated using the new estimatorsfor ross-orrelations. The �rst onernsthe need for oinidene. Conventionalestimators of the ross-orrelation fun-tion work diretly from the de�nitionRAB(�) = 1N NXi=1 uA(ti)uB(ti + �) (19)whereby it is understood that the meanhas been removed from the input signalsuA and uB . Thus a produt uAuB anonly ontribute to the sum if veloity in-formation from the two hannels omewith a lag time of exatly � . Pratially,an aeptane window in time (oini-dene window) is tolerated, however inmany appliations this window must behosen very narrow to avoid a loss of or-relation, hene a biased estimator. Phys-ially, the required window width will beditated by the time orrelation funtionitself, and must often be hosen empiri-ally and/or iteratively.In any ase, given a narrow oinidenewindow, the data rate of oinident velo-ity pairs may beome very low, espeiallyfor spatially separated measurement vol-umes. Thus, the duration of the measure-ment to ahieve a statistially satisfa-tory number of samples N may beomeintolerably long. Aepting a lower value

�yr
?Figure 7: Two-point on�guration lead-ing to spatial bias of the ross-orrelationfuntion.of N simply inreases the variane of theestimate.A seond de�ieny onerns the oin-idene window implementation, whih isavailable at the hardware level only for� = 0. In this ase only data pairs whihour simultaneous in time are ativelyaquired, minimizing the amount of ol-leted data. For other time lags (� 6= 0)no hardware oinidene is forseen. Ifthe funtion RAB(�) is to be evaluatedat many � values, then all data must beaquired from both hannels and oini-dene must be implemented at the soft-ware level. In this ase, again, due to thegenerally lower `hit' rate of oinidene,large amounts of data must be aquiredand reorded to yield statistially seureestimates.A �nal diÆulty with present esti-mators has been pointed out by Bene-dit and Gould [3℄ in their disussion oftwo-point orrelation estimates when theseparation distane beomes very small.Suh measurements are neessary if di-ret measurements of dissipation are tobe attempted. One the two measure-ment volumes begin to overlap any g-type orrelation will beome biased be-ause oinidene will be triggered whena single partile passes through the over-lapping region, as illustrated in �gure 7.However veloity data from the two han-nels does not originate from the sur-mised spatial separation of �y, but withan e�etive spatial separation of zero.
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4 Further derivations4.1 Length sales and dissipa-tion rateThe obtained orrelation funtions andthe turbulene spetra an be used to de-rive several time and length sales andalso the dissipation rate. This requiresspatial orrelations and the orrespond-ing wave number spetra, whih an beobtained diretly using multi-point mea-surements. Temporal orrelation fun-tions and power spetra from single-pointmeasurements �rst have to be trans-formed to spatial funtions using theTaylor hypothesis� = !�u (20)r = �ut (21)with the wave number � = 2�� , the ir-ular frequeny ! = 2�f , the spatial dis-tane r, the time t and the mean veloity�u, leading to the expressionsE(�) = E�2�f�u � = �u2�G(f) (22)Rr(r) = Rt � r�u� (23)with the wave number spetrum E(�),the power spetrumG(f), the spatial andthe temporal orrelation funtions Rr(r)and Rt(�) withE(�) = 1� Z 1�1Rr(x) os(�x) dx (24)G(f) = 2Z 1�1Rt(�) os(2�f�) d� (25)Rr(x) = hu(r)u(r + x)i (26)Rt(�) = hu(t)u(t+ �)i (27)and the expetation hi.For isotropi turbulene and stream-wise laser Doppler mesurements, the �tE(�) = 0:49�2=3��5=3 (28)



to the inertial subrange of the wave num-ber spetrum an be used to estimate thedissipation rate of turbulent kineti en-ergy per unit mass, �.From a paraboli �t to the spatial or-relation funtion at x = 0 the Taylorlength sale �f (f -type for streamwisemeasurements) an be omputed using�2f = 2hu02iD��u0�x �2E = �2Rr(0)R00r (0) (29)Then the dissipation rate an be esti-mated using � = 30� hu02i�2f (30)with the kinemati visosity �.Finally, the dissipation rate an be es-timated from the integral length saleL = 1hu02i Z 10 Rr(x) dx (31)using � = k3=22L (32)and with the turbulent kineti energyk = 32 hu02i (33)Note that all these expressions arevalid only for isotropi turbulene, smallturbulene levels and measurements ofthe streamwise veloity omponent.4.2 Spetral LimitsThe disussion in setion 3 indiates thatthe hoie of spetral estimator greatlyinuenes the maximum frequeny towhih the PSD an be reliably estimated.Whereas equally spaed samples yieldestimates only up to the Nyquist fre-queny, i. e. half of the sample rate, thesituation with irregularly sampled datais quite variant. A simple sample-and

hold reonstrution with re-sampling al-lows estimates up to _n=2�. The moreadvaned estimators an extend this toseveral times _n. However _n, the meandata rate, an be inreased by either in-reasing the traer partile density orby enlarging the measurement detetionvolume of the system. In both ases,the probability of obtaining two partilessimultaneously in the detetion volumemust be kept low.Given that this probability is to remainless than 0:5% and assuming a Poissondistribution, the Poisson parameter �N ,expressing the mean number of partilessimultaneously in the volume, i. e.P (N; �N ) = �NNN ! e� �N (34)must satisfy �N < 0:1. If V0 is the mea-surement volume, then the allowable on-entration s (partiles=m3) beomess � 0:1V0 (35)On the other hand, s must be hosenlarge enough to yield the required meandata rate to estimate the spetrum at thedesired maximum frequeny fmax. As-suming fmax � _n (onservative) and us-ing Eq. (2) s = _nA?�u � fmaxA?�u (36)Sine the right-hand side of Eq. (36) mustalways be less than that of Eq. (35)fmax � 0:1 �uA?V0 � 0:3�urd (37)for an elliptial volume where rd is theradius of the ellipsoidal detetion volumeand a one-dimensional ow is assumed.This indiates that the spetral limit infrequeny is determined by the dimen-sions of the measurement volume and themean veloity and that a orrespondingpartile density must be hosen to attainthis limit.



5 ConlusionThe proedures for estimating powerspetral density, autoorrelation funtionand various quantities derived from thesefuntions from laser Doppler data hasbeen reviewed. Two spetral estima-tors for single-omponent, single-pointsystems have been reviewed. Some re-marks about how these estimators an beextended to multi-omponent or multi-point measurements have been made. Fi-nally, the onsequenes of using theseimproved estimation proedures on thelayout of the optial system have beenbriey disussed.Referenes[1℄ R J Adrian and C S Yao. Powerspetra of uid veloities measuredby laser Doppler veloimetry. Exp.in Fluids, 5:17{28, 1987.[2℄ D O Barnet and H T Bentley. Sta-tistial bias of individual realizationlaser veloimeters. In Pro. 2ndInt. Workshop on Laser Veloime-try, pages 428{444, Purdue Univer-sity, 1974.[3℄ L H Benedit and R D Gould. Un-derstanding biases in the near-�eldregion of LDA two-point orrelationmeasurements. In Pro. 8th Int.Symp. of Appl. of Laser Tehn. toFluid Mehanis, Lisbon, Portugal,1996. paper 36.6.[4℄ L H Benedit, H Nobah, and C Tro-pea. Estimation of turbulent velo-ity spetra from laser Doppler data.Meas. Si. Tehnol., 11(8):1089{1104, 2000.[5℄ F Durst and K F Heiber. Signal-Raush-Verh�altnisse von Laser-Doppler-Signalen. Optia Ata,24:43{67, 1977.

[6℄ R V Edwards and A S Jensen.Partile-sampling statistis in laseranemometers: Sample-and-hold sys-tems and saturable system. J. FluidMeh., 133:397{411, 1983.[7℄ J C Erdmann and C Tropea. Sta-tistial bias of the veloity distri-bution funtion in laser anemome-try. In Pro. 1st Int. Symp. on Appl.of Laser Tehn. to Fluid Mehanis,Lisbon, Portugal, 1982. paper 16.2.[8℄ W Fuhs, H Nobah, and C Tro-pea. Laser Doppler anemometrydata simulation: Appliation to in-vestigate the auray of statistialestimators. AIAA Journal, 32:1883{1889, 1994.[9℄ M Gaster and J B Roberts. Spe-tral analysis of randomly sampledsignals. J. Inst. Maths. Applis.,15:195{216, 1975.[10℄ M Gaster and J B Roberts. Thespetral analysis of randomly sam-pled reords by a diret transform.Pro. R. So. Lond. A., 354:27{58,1977.[11℄ W K George and J L Lumley. Thelaser Doppler veloimeter and its ap-pliation to the measurement of tur-bulene. J. Fluid Meh., 60:321{362,1973.[12℄ P Gjelstrup, H Nobah, F J�r-gensen, and K E Meyer. Experi-mental veri�ation of novel spetralanalysis algorithms for laser Doppleranemometry data. In Pro. 10th Int.Symp. on Appl. of Laser Tehn. toFluid Mehanis, Lisbon, Portugal,2000. paper 3.2.[13℄ W H�osel and W Rodi. New bi-asing elimination method for laser-Doppler-veloimeter ounter pro-essing. Rev. Si. Instrum., pages910{919, 1977.



[14℄ A H�st-Madsen. A new method forestimation of turbulene spetra forlaser Doppler anemometry. In Pro.7th Int. Symp. on Appl. of LaserTehn. to Fluid Mehanis, Lisbon,Portugal, 1994. paper 11.1.[15℄ W T Mayo Jr, M T Shay, and S Rit-ter. The development of new digitaldata proessing tehniques for tur-bulene measurements with a laserveloimeter, 1974. AEDC-TR-74-53[16℄ H R E van Maanen, H Nobah, andL H Benedit. Improved estima-tor for the slotted autoorrelationfuntion of randomly sampled LDAdata. Meas. Si. Tehnol., 10(1):L4{L7, 1999.[17℄ H R E van Maanen and A Olden-ziel. Estimation of turbulenepower spetra from randomly sam-pled data by urve-�t to the auto-orrelation funtion applied to laser-Doppler anemometry. Meas. Si.Tehnol., 9:458{467, 1998.[18℄ H R E van Maanen and H JA F Tulleken. Appliation ofkalman reonstrution to laser-Doppler anemometry data for esti-mation of turbulent veloity utu-ations. In Pro. 7th Int. Symp. onAppl. of Laser Tehn. to Fluid Me-hanis, Lisbon, Portugal, 1994. pa-per 23.1.[19℄ H R E van Maanen and M J Tum-mers. Estimation of the autoorre-lation funtion of turbulent velo-ity utuations using the slottingtehnique with loal normalization.In Pro. 8th Int. Symp. on Appl.of Laser Tehn. to Fluid Mehanis,Lisbon, Portugal, 1996. paper 36.4.[20℄ D W Marquardt and S K Au�. Di-ret Quadrati Spetrum Estimationwith Irregularly Spaed Data, pages

211{223. Springer Verlag, Berlin,1983.[21℄ D K M Laughlin and W G Tie-derman. Biasing orretion for indi-vidual realisation of laser anemome-ter measurements in turbulent ows.Phys. of Fluids, 16(12):2082{2088,1973.[22℄ E M�uller, H Nobah, and C Tro-pea. Model parameter estimationfrom non-equidistant sampled datasets at low data rates. Meas. Si.Tehnol., 9(3):435{441, 1998.[23℄ E M�uller, H Nobah, and C Tropea.A re�ned reonstrution-basedorrelation estimator for two-hannel, non-oinident laserDoppler anemometry. Meas. Si.and Tehnology, 9(3):442{451, 1998.[24℄ H Nobah. Proessing of stohas-ti sampled data in laser Doppleranemometry. In Pro. 3rd Interna-tional Workshop on Sampling The-ory and Appliations, pages 149{154, 1999.[25℄ H Nobah, E M�uller, and C Tro-pea. Re�ned reonstrution teh-niques for LDA data analysis. InPro. 8th Int. Symp. on Appl. ofLaser Tehn. to Fluid Mehanis,Lisbon, Portugal, 1996. paper 36.2.[26℄ H Nobah, E M�uller, and C Tro-pea. Correlation estimator fortwo-hannel, non-oinidene laser-Doppler-anemometer. In Pro. 9thInt. Symp. on Appl. of Laser Tehn.to Fluid Mehanis, Lisbon, Portu-gal, 1998. paper 32.1.[27℄ A K P Rajpal. Power spetrum es-timates of LDA measurements us-ing sargle periodogram analysis.In Pro. ASME/JSME Fluids Eng.and Laser Anemometry Conf., pages



411{415, Hilton Head Island, SouthCarolina, USA, 1995. FED-Vol. 229.[28℄ J B Roberts, J Downie, andM Gaster. Spetral analysis of sig-nals from a laser Doppler anemome-ter operating in the burst mode. J.Phys. E: Si. Instrum., 13:977{981,1980.[29℄ P Saarenrinne, S Soini, H Ihalainen,and O Kaleva. Turbulene spetralpower density estimation for laserDoppler anemometer measurementsin a mixing tank ow�eld. In Pro.7th Int. Conf. on Laser Anemome-try, pages 335{342, Karlsruhe, 1997.[30℄ J D Sargle. Studies in astronom-ial time series analysis. ii. statisti-al aspets of spetral analysis of un-evenly spaed data. The Astrophys-ial Journal, 263:835{853, 1982.[31℄ M J Tummers and D M Passhier.Spetral estimation using a variablewindow and the slotting tehniquewith loal normalization. Meas. Si.Tehnol., 7:1541{1546, 1996.


