
Turbulent Velo
ity Spe
tra from LaserDoppler DataC. Tropea�, H. Noba
h�, A. Ramondy, Ph. Reulety�Te
hni
al University DarmstadtyONERAAbstra
t This 
ontribution reviews the estimation of spe
tra from laserDoppler data and provides some re
ommended guidelines. It isshown that reliable spe
tral estimates 
an be a
hieved for frequen-
ies well beyond the mean data rate. The estimators dis
ussedhere exhibit some further advantages when used for pro
essingdata from multi-point measurements, used for spatial 
orrelations.Some �nal remarks are dire
ted towards the rami�
ations of thesepro
edures on the opti
al system design.1 Introdu
tionLaser measurement te
hniques are par-ti
ularly attra
tive in aerodynami
 re-sear
h be
ause they are both non-intrusive and quantitative. The rangeof available te
hniques has expandedrapidly in re
ent years, as indi
ated inFig. 1. This �gure uses a 
lassi�
ationa

ording to 
omponents (u, v, w, dp)and dimensions (x, y, z, t) and has beenrestri
ted to those te
hniques employingelasti
 light s
attering from tra
er parti-
les.While multi-
omponent te
hniquessu
h as PIV or DGV provide valuablespatial information about the 
ow�eld,these te
hniques are generally quitelimited in their temporal resolution.This limitation is 
losely 
oupled to thereadout speed of the CCD 
ameras usedfor dete
tion. From Fig. 1 it is evidentthat at the present time only the laserDoppler/phase Doppler te
hniques o�erthis time resolution.High time resolution 
an be importantin two respe
ts. The �rst is to be able to

resolve instationary or periodi
 phenom-ena and the se
ond is to provide spe
-tral (or 
orrelation) information aboutthe 
ow pro
ess. It is the latter feature,whi
h is the fo
us of the present paper.Spe
tral estimation of 
ow velo
ity
u
tuations from laser Doppler data hasbeen a topi
 of dis
ussion sin
e the earlywork of Mayo et al [15℄. An histori
alsummary and also a review of the presentstate-of-the-art has been published re-
ently by Benedi
t et al [4℄. The es-timation is not straightforward due toseveral unique features of laser Dopplerdata, whi
h are brie
y reviewed in se
-tion 2. In se
tions 3.1.1 and 3.1.2 thetwo most re
ommendable estimators arepresented, in
luding some very re
entimprovements. The situation be
omesone degree more 
omplex when multi-
omponent or multi-point measurementsare involved and this is dis
ussed in se
-tion 3.2.Spe
tral estimation is often a �rst stepto estimation of further quantities su
has length s
ales or dissipation. Se
tion 4shows how some of these quantities 
an
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Figure 1: Overview of laser measurement te
hniques for single and multi-phase 
owsbe 
omputed.2 Chara
teristi
s of LaserDoppler DataFor the present dis
ussion no details ofthe laser Doppler te
hnique itself will begiven. It is simply assumed that the de-vi
e makes available a data set 
onsistingof up to three velo
ity 
omponents andan arrival time for every tra
er parti
lein the 
ow whi
h has been dete
ted andvalidated. Thus, primarily only pro
ess-ing algorithms (software) are 
onsidered.The laser Doppler te
hnique gives atransient history of velo
ity values de-rived from individual parti
les that 
rossthe measurement volume. For ea
h velo
-ity measurement there exists an arrivaltime of the 
orresponding parti
le. Thelaser Doppler data set represents a seriesof time-velo
ity pairs.2.1 Sto
hasti
 samplingThe most important feature of the laserDoppler data set arises from the fa
t thatthe te
hnique is a tra
er-based method,hen
e the data sample arival times are
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hasti
 sampling with alaser Doppler instrumentirregular. In [6, 7℄ investigations on thesampling statisti
s have been presented.Presuming an equal parti
le distributionin spa
e with a 
onstant 
on
entration
s, the intervals �t between the measure-ments are distributed exponentiallyp(�t) = _ne� _n�t (1)with the mean data rate _n (Figure 2).The exponential distribution meansthat regardless of how low the mean datarate is, the most probable time betweensamples remains zero. Prin
ipally, in-formation about high frequen
y velo
ity
u
tuations is therefore always available.
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Figure 3: Velo
ity distribution of theoriginal 
ow �eld 
ompared to the dataset (1 dimensional simulation)2.2 Correlation between velo
-ity and data rateFor non-
onstant velo
ities the instanta-neous data rate is not 
onstant in spiteof a 
onstant parti
le 
on
entration 
s.Presuming a 
onstant spatial distributionof tra
er parti
les the 
uid or gas vol-ume that passes the measurement vol-ume within a given time is proportionalto the velo
ity, hen
e the rate of measure-ments is proportional to the velo
ity aswell. This leads to a more frequent o
-
urren
e of high velo
ity measurementsand to a distorted velo
ity distribution,
alled velo
ity bias. This e�e
t is showns
hemati
ally in Figure 3.Furthermore, the data rate depends onthe size of the measurement volume. Itis proportional to the proje
ted area A?of the measurement volume normal tothe 
ow velo
ity ve
tor. Be
ause of thesigni�
ant prolate shape of the measure-ment volume, the size of the proje
tiondepends on the dire
tion of the 
ow. Anexpression of the variable data rate isgiven through_n = 
sA?(~u) j~uj (2)whi
h des
ribes the 
orrelation of thedata rate and the velo
ity [21℄. Conse-quently, the sampling s
heme depends on
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Interarrival Time [µs]Figure 4: Distribution of interarrivaltimes (measurement)the measured velo
ity value.2.3 Pro
essor delayThe velo
ity measurements ensue nor-mally from single parti
les. If twoparti
les enter the measurement volumewithin a short time interval, the burstsignals overlap. Be
ause of the phase dif-feren
e of the bursts a phase drift 
anbe seen within the double burst signal.Therefore, the burst frequen
y 
annot bederived exa
tly. These multi-parti
le sig-nals are dete
ted by pre-pro
essors thatoften reje
t them from the data stream.This leads to a signi�
ant underrepresen-tation of small interarrival times (Fig-ure 4). Note that even modern and fastpro
essors 
annot avoid the delay time,sin
e it is given by the opti
al setupthrough the simple approximationtdel = dMV�u (3)using the diameter of the measurementvolume dMV and the mean velo
ity �u.2.4 NoiseThere are numerous sour
es of noise bothin the velo
ity values registered as wellas in the arrival times. These in
ludethe sto
hasti
 nature of light generation,s
attering and dete
tion [15℄, ele
troni




noise [5℄ and also noise due to the ran-dom arrival of parti
les in the dete
tionvolume [11℄. Noise in the pro
essed sig-nal leads to 
u
tuations in the measuredvelo
ity values, whi
h 
annot be distigu-ished from turbulent 
ow 
u
tuations.However, it is generally assumed that ve-lo
ity 
u
tuations due to noise are ran-dom in nature, i. e. lead to white noisein the spe
tral domain of velo
ity 
u
tu-ations.3 Estimation of 
orrela-tion and power spe
traldensity fun
tions3.1 One-point, one-
omponentmeasurementsThe fa
t that, due to the exponetially dis-tributed interarrival times, velo
ity infor-mation is often available over very shorttime spans, suggests that prin
ipally, in-formation about very high frequen
y 
u
-tuations is 
ontained in the data. This isin strong 
ontrast to data whi
h is sam-pled at equal time intervals, for whi
h thesampling theorem applies and for whi
hno information above the Nyquist fre-quen
y (f
 = 12�t , �t sample interval) isavailable. This, in
idently, was the moti-vation for a series of arti
les investigatingthe possibility of a dire
t Fourier trans-form of the laser Doppler data to obtaina PSD (power spetral density) estimate,i. e. a transform without exploiting theFFT [9, 10, 28℄.However, the prospe
t of alias-freePSD estimators at frequen
ies beyondthe mean Nyquist frequen
y (f
 = _n=2)through use of a dire
t transform didnot meet expe
tations. Basi
ally thevariability of the estimator in
reased tooqui
kly with frequen
y, so that while anestimation 
ould formally be performedat high frequen
ies, the answer was ex-tremely unreliable. In [31℄ Tummers and
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Figure 5: The \parti
le-rate �lter" andthe re�nement using the SH re
onstru
-tion (simulation)Pass
hier have shown that its variabil-ity, even with blo
k averaging, is no bet-ter than the slotting algorithm dis
ussedbelow. Furthermore, even with furthermodi�
ations [30, 27, 29, 20℄, the estima-tion varian
e is larger then the varian
eof the slotting te
hnique or the re�ned re-
onstru
tion. This estimator is thereforenot pursued there and is only presentedo

asionally in the literature as a 
om-parison.3.1.1 Re
onstru
tionRe
onstru
tion approa
hes 
reateequidistant spa
ed time series by resam-pling a

ording to various interpolations
hemes, thereby allowing an FFT tobe used in making PSD estimates.The most 
ommon s
heme by far isthe sample-and-hold (zero-order, SH)re
onstru
tion. This is the simplest ofthe polynomial 
lass of re
onstru
tionalgorithms. The limits of the re
onstru
-tion te
hnique are given through thedata rate, sin
e the re
onstru
tion fromirregularly sampled data sets has a �lter
hara
teristi
 [1℄ (�gure 5). It has beenwell do
umented that the �lter e�e
tbe
omes signi�
ant at frequen
ies evenunder _n=2� [18℄. Re
ently, a re�nementwas developed that 
an
els the �lter



e�e
t asso
iated with re
onstru
tionte
hniques [25℄ (�gure 5). The approa
his to derive an expression for the resam-pled ACF in terms of the true ACF. Therelation is then inverted to improve theACF estimation. In the 
ase of the SHre
onstru
tion the re�nement be
omesvery simpleR̂k =8>><>>:R̂00 for k = 0(2
+ 1)R̂0k�
�R̂0k�1+R̂0k+1�for k = 1 : : : K (4)
= e� _n��(1� e� _n�� )2 (5)where R̂ is the re�ned ACF estimatebased on the ACF R̂0 of the re
onstru
tedand resampled time signal. In prin
i-ple, a re�nement 
an be derived for anyre
onstru
tion algorithm. Other re
on-stru
tion te
hniques, su
h as single expo-nential re
onstru
tion [14℄, other propor-tional one-point re
onstru
tions [25℄ oreven the linear re
onstru
tion, and theirre�nement �lters have been investigated.The results are similar and the algorithmis e�e
tive enough with the SH re
on-stru
tion that the advantages of other re-
onstru
tion s
hemes be
ome negligible.Therefore, the SH re
onstru
tion is suf-�
ient and furthermore, the re�nement�lter be
omes very simple only for thisre
onstru
tion s
heme.The in
uen
e of the velo
ity bias onthe results of the re
onstru
tion te
h-nique is small (at least for quite high datarates), be
ause the re
onstru
tion valueswith large interarrival times are resam-pled more often than values with smallerinterarrival times. This prin
iple is simi-lar to the arrival time weighting [2℄.However, the noise and the pro
essordelay a�e
t the statisti
s of this estima-tor. Espe
ially the value R̂0 of the ACFat lag time zero is obs
ured by these ef-fe
ts. To remove the noise and the e�e
tof the pro
essor delay from the ACF es-
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Figure 6: The e�e
t of the data noiseand the pro
essor delay on the PSD andthe result with the model-based varian
eestimation using the re
onstru
tion algo-rithm (simulation)timate, a model-based estimation of R̂0
an be used. Prin
ipally speaking, sim-ple and 
onvenient models [17, 22℄ 
an beused. Nevertheless, the parameter opti-mization is diÆ
ult and 
ostly. The useof a weighting fun
tion with strong 
o-eÆ
ients 
lose to the lag time zero al-lows simpler models to be used. In [19℄ aGaussian fun
tion and in [4℄ a more 
ex-ible version with an additional param-eter was used as a model of the ACF.These models 
orrespond to the Taylormi
ros
ale estimation (paraboli
 behav-ior of R near � = 0). However, thesemodels are not able to des
ribe periodi

omponents, so that the weighting fun
-tion should de
rease very strong with thelag time. Figure 6 shows the e�e
t of themodel-based varian
e estimation.The 
orre
ted ACF estimate 
an betransformed to the PSD using the dis-
rete 
osine transformŜj = Ŝ(fj) = Ŝ� j2K��� = 2���"R̂0 + 2K�1Xk=1 R̂k 
os(2�fjk��)+(�1)jR̂Ki (6)Alternatively, in [31℄ a frequen
y de-



pendent variable windowing of the ACFis re
ommended for the transform to thePSD Ŝ(f) = 2�� hR̂0+2K�1Xk=1 dk(f)R̂k 
os(2�fk��)#(7)with windowing 
oeÆ
ients dk(f), whi
hvary with the frequen
y f . Good ex-perien
e was obtained using the Tukey-Hanning window withdk(f) = 8>><>>:12 + 12 
os��fk��� �for jfk�� j < �0 otherwise (8)The parameter � 
an be 
hosen arbitrar-ily, e. g. � = 6 was found to yield goodresults.This te
hnique redu
es the estimationvarian
e espe
ially for higher frequen
ies,while through the windowing a leakagee�e
t arises. However, now the spe
-trum 
an be 
al
ulated at any frequen
y.This 
ould redu
e the number of requiredspe
tral lines in the 
ase of a logarith-mi
 axis s
aling, whi
h is often used topresent turbulen
e spe
tra. This is im-portant be
ause the the FFT 
annot beused for this transform and every spe
tralvalue has to be 
al
ulated independently.Re
ently, the 
apability of the re�nedre
onstru
tion algorithm was demon-strated using experimental data takenbehind a grind in a wind tunnel [12℄. Thealgorithm 
ould be veri�ed to be bias freeand to be able to re
over the PSD up tofrequen
ies mu
h higher than the meandata rate.3.1.2 Slot
orrelationTo redu
e the variability of the originalslotting algorithm [15℄, the lo
al normal-ization [19℄ and the fuzzy slotting te
h-nique [26℄ were 
ombined to a more pow-

erful algorithm [16℄. Additionally, the al-gorithm was extended by weighting algo-rithms [24℄ known from the estimation ofstatisti
al values like the mean velo
ity orthe varian
e [8℄. The advantage of this al-gorithm is the very low variability of theestimate and the possibility of redu
ingthe in
uen
e of the velo
ity bias by sev-eral, di�erent weighting te
hniques.Every 
ombination of two samples uiand uj of the data series taken at thetimes ti and tj is pro
essed for ea
h timelag k�� (k = 0 : : : K) usingR̂k = �̂2uApBC (9)withA = N�1Xi=1 NXj=i+1uiujwiwjbk(tj � ti)(10)B = N�1Xi=1 NXj=i+1u2iwiwjbk(tj � ti) (11)C = N�1Xi=1 NXj=i+1u2jwiwjbk(tj � ti) (12)and with the fuzzy mask fun
tionbk(tj�ti) = 8>><>>:1� ��� tj�ti�� � k���for ��� tj�ti�� � k��� < 10 otherwise (13)The estimate of the velo
ity varian
e isobtained using�̂2u = PNi=1 u2iwiPNi=1 wi : (14)with the weighting fa
tors wi.To obtain the weighting fa
tors severals
hemes 
an be used. Example weightingfa
tors, wi, are the transit time weighting[13℄ wi = TTi (15)or the arrival time weighting [2℄wi = ti � ti�1 (16)



with the arrival time ti of the velo
itysample ui, whi
h is independent of theparti
le distribution [8℄. Both of theseweighting fun
tions are found to yieldnon-biased results for a

urate measure-ments of the transit time (transit timeweighting) or suÆ
iently high data den-sities (interarrival time weighting).Note that the estimation of the 
or-relation fun
tion (Eq. (9)) in the 
aseof interarrival time weighting requiresa revised s
heme, the forward-ba
kwardweighting [24℄wi = ti � ti�1 (17)wj = tj+1 � tj (18)be
ause of the 
orrelation between thetime lag and the arrival time distribution.In prin
ipal, also a velo
ity weighting[21℄ 
an be used. however, it was foundto be very sensitive to the noise in thedata set.Sin
e self-produ
ts are not taken, theA value in the numerator of equation (9)is independent of the data noise. How-ever, the 
oeÆ
ients in the denuminatorin
lude self-produ
ts and are a�e
ted bythe data noise. Furthermore, also thepro
essor delay in
uen
es the estimationresults. Therefore, the model-based vari-an
e estimation used for the re�ned re-
onstru
tion 
an be used here to improvethe results of the slotting algorithm. Thetransform to the PSD is similar to thepro
edure given for the re�ned re
on-stru
tion. It 
an be performed eitherwithout or with the variable windowingte
hnique to improve the spe
trum.3.2 Multi-
omponent/multi-point measurementsThe slotting te
hnique and the re�ned re-
onstru
tion have been modi�ed to es-timate also the 
ross-
orrelation fun
-tion (CCF) and the 
ross-power spe
traldensity (CPSD) from multi-
hannel laser

Doppler measurements [23, 26℄. Both ar-rangements of measurment volumes arepossible, the multi-
omponent and themulti-point 
on�guration.In the multi-
omponent 
on�gurationthe measurement volumes overlap, yield-ing di�erent velo
ity 
omponents of the
ow at a 
ommon lo
ation. The 
ross-
orrelation of the di�erent velo
ity 
om-ponents represent 
omponents of theReynolds shear stress tensor.Normally, the data of the two or moreindividual laser Doppler systems are a
-
epted only if the measurements of all ve-lo
ity 
omponents o

ur within a smalltime window (
oin
iden
e). Then the in-dividual velo
ity measurements 
an beassigned to one parti
le and the velo
-ity ve
tor of ea
h parti
le 
an be trans-formed to any other 
oordinate system.In [23℄ a 
oordinate transform isderived also for free-running multi-
omponent measurements without 
oin-
iden
e. In that 
ase, �rst the CCF mustbe 
al
ulated in the 
oordinates of themeasurement system. The transform toanother 
oordinate system 
an then bedone only for the CCF, not for the indi-vidual parti
les.The CCF 
an be 
al
ulated from thedata sets either with the slotting or there
onstru
tion te
hnique. Both te
h-niques 
an be easily adapted to mea-surements in either the free-running orthe 
oin
iden
e mode. The advantageof the free-running mode is the higherdata rate, sin
e all parti
les are a

eptedpassing at least one of the measurementvolumes, while with the requirement of
oin
iden
e, only parti
les are validatedwhi
h pass through all measurement vol-umes. On the other hand, the 
oin
i-den
e redu
es the e�e
tive size of themeasurement volume, leading to a higherspatial resolution of the system, whilewithout the 
oin
iden
e the velo
ities areaveraged over the union of all individual



measurement volumes.If a two-point or multi-point laserDoppler system is 
onsidered, the 
or-relations represent spatial 
orrelations.Most 
ommonly, these 
orrelations be-tween velo
ity 
u
tuations are evaluatedat lag time zero (
ovarian
e or after nor-malization 
orrelation 
oeÆ
ient), how-ever in prin
iple all lag times 
an be
onsidered, in whi
h 
ase the 
orrelationfun
tion or spa
e-time 
orrelation fun
-tion between velo
ity 
u
tuations 
an beobtained.There are three basi
 de�
ien
ies inpresent laser Doppler systems whi
h 
anbe eliminated using the new estimatorsfor 
ross-
orrelations. The �rst 
on
ernsthe need for 
oin
iden
e. Conventionalestimators of the 
ross-
orrelation fun
-tion work dire
tly from the de�nitionRAB(�) = 1N NXi=1 uA(ti)uB(ti + �) (19)whereby it is understood that the meanhas been removed from the input signalsuA and uB . Thus a produ
t uAuB 
anonly 
ontribute to the sum if velo
ity in-formation from the two 
hannels 
omewith a lag time of exa
tly � . Pra
ti
ally,an a

eptan
e window in time (
oin
i-den
e window) is tolerated, however inmany appli
ations this window must be
hosen very narrow to avoid a loss of 
or-relation, hen
e a biased estimator. Phys-i
ally, the required window width will bedi
tated by the time 
orrelation fun
tionitself, and must often be 
hosen empiri-
ally and/or iteratively.In any 
ase, given a narrow 
oin
iden
ewindow, the data rate of 
oin
ident velo
-ity pairs may be
ome very low, espe
iallyfor spatially separated measurement vol-umes. Thus, the duration of the measure-ment to a
hieve a statisti
ally satisfa
-tory number of samples N may be
omeintolerably long. A

epting a lower value

�yr
?Figure 7: Two-point 
on�guration lead-ing to spatial bias of the 
ross-
orrelationfuntion.of N simply in
reases the varian
e of theestimate.A se
ond de�
ien
y 
on
erns the 
oin-
iden
e window implementation, whi
h isavailable at the hardware level only for� = 0. In this 
ase only data pairs whi
ho

ur simultaneous in time are a
tivelya
quired, minimizing the amount of 
ol-le
ted data. For other time lags (� 6= 0)no hardware 
oin
iden
e is forseen. Ifthe fun
tion RAB(�) is to be evaluatedat many � values, then all data must bea
quired from both 
hannels and 
oin
i-den
e must be implemented at the soft-ware level. In this 
ase, again, due to thegenerally lower `hit' rate of 
oin
iden
e,large amounts of data must be a
quiredand re
orded to yield statisti
ally se
ureestimates.A �nal diÆ
ulty with present esti-mators has been pointed out by Bene-di
t and Gould [3℄ in their dis
ussion oftwo-point 
orrelation estimates when theseparation distan
e be
omes very small.Su
h measurements are ne
essary if di-re
t measurements of dissipation are tobe attempted. On
e the two measure-ment volumes begin to overlap any g-type 
orrelation will be
ome biased be-
ause 
oin
iden
e will be triggered whena single parti
le passes through the over-lapping region, as illustrated in �gure 7.However velo
ity data from the two 
han-nels does not originate from the sur-mised spatial separation of �y, but withan e�e
tive spatial separation of zero.
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e estimation for thetwo-point g-type 
on�guration.Thus the estimator using 
oin
iden
e willlead to a spatial bias in the near-�eldregion. This bias is very signi�
ant,sin
e the number of single parti
le, two-
hannel signals is mu
h larger than fortwo-parti
le, two-
hannel 
oin
ident sig-nals. All of the above diÆ
ulties will bealleviated using the re
onstru
tion or theslotting method for multi-
hannel mea-surements in the free-running mode. Fur-thermore, if ne
essary, 
oordinate trans-forms 
an be performed with the derived
orrelation fun
tions.Some example results of f - and g-type
orrelations using various estimators aregiven in �gures 8 and 9 respe
tively.

4 Further derivations4.1 Length s
ales and dissipa-tion rateThe obtained 
orrelation fun
tions andthe turbulen
e spe
tra 
an be used to de-rive several time and length s
ales andalso the dissipation rate. This requiresspatial 
orrelations and the 
orrespond-ing wave number spe
tra, whi
h 
an beobtained dire
tly using multi-point mea-surements. Temporal 
orrelation fun
-tions and power spe
tra from single-pointmeasurements �rst have to be trans-formed to spatial fun
tions using theTaylor hypothesis� = !�u (20)r = �ut (21)with the wave number � = 2�� , the 
ir-
ular frequen
y ! = 2�f , the spatial dis-tan
e r, the time t and the mean velo
ity�u, leading to the expressionsE(�) = E�2�f�u � = �u2�G(f) (22)Rr(r) = Rt � r�u� (23)with the wave number spe
trum E(�),the power spe
trumG(f), the spatial andthe temporal 
orrelation fun
tions Rr(r)and Rt(�) withE(�) = 1� Z 1�1Rr(x) 
os(�x) dx (24)G(f) = 2Z 1�1Rt(�) 
os(2�f�) d� (25)Rr(x) = hu(r)u(r + x)i (26)Rt(�) = hu(t)u(t+ �)i (27)and the expe
tation hi.For isotropi
 turbulen
e and stream-wise laser Doppler mesurements, the �tE(�) = 0:49�2=3��5=3 (28)



to the inertial subrange of the wave num-ber spe
trum 
an be used to estimate thedissipation rate of turbulent kineti
 en-ergy per unit mass, �.From a paraboli
 �t to the spatial 
or-relation fun
tion at x = 0 the Taylorlength s
ale �f (f -type for streamwisemeasurements) 
an be 
omputed using�2f = 2hu02iD��u0�x �2E = �2Rr(0)R00r (0) (29)Then the dissipation rate 
an be esti-mated using � = 30� hu02i�2f (30)with the kinemati
 vis
osity �.Finally, the dissipation rate 
an be es-timated from the integral length s
aleL = 1hu02i Z 10 Rr(x) dx (31)using � = k3=22L (32)and with the turbulent kineti
 energyk = 32 hu02i (33)Note that all these expressions arevalid only for isotropi
 turbulen
e, smallturbulen
e levels and measurements ofthe streamwise velo
ity 
omponent.4.2 Spe
tral LimitsThe dis
ussion in se
tion 3 indi
ates thatthe 
hoi
e of spe
tral estimator greatlyin
uen
es the maximum frequen
y towhi
h the PSD 
an be reliably estimated.Whereas equally spa
ed samples yieldestimates only up to the Nyquist fre-quen
y, i. e. half of the sample rate, thesituation with irregularly sampled datais quite variant. A simple sample-and

hold re
onstru
tion with re-sampling al-lows estimates up to _n=2�. The moreadvan
ed estimators 
an extend this toseveral times _n. However _n, the meandata rate, 
an be in
reased by either in-
reasing the tra
er parti
le density orby enlarging the measurement dete
tionvolume of the system. In both 
ases,the probability of obtaining two parti
lessimultaneously in the dete
tion volumemust be kept low.Given that this probability is to remainless than 0:5% and assuming a Poissondistribution, the Poisson parameter �N ,expressing the mean number of parti
lessimultaneously in the volume, i. e.P (N; �N ) = �NNN ! e� �N (34)must satisfy �N < 0:1. If V0 is the mea-surement volume, then the allowable 
on-
entration 
s (parti
les=m3) be
omes
s � 0:1V0 (35)On the other hand, 
s must be 
hosenlarge enough to yield the required meandata rate to estimate the spe
trum at thedesired maximum frequen
y fmax. As-suming fmax � _n (
onservative) and us-ing Eq. (2) 
s = _nA?�u � fmaxA?�u (36)Sin
e the right-hand side of Eq. (36) mustalways be less than that of Eq. (35)fmax � 0:1 �uA?V0 � 0:3�urd (37)for an ellipti
al volume where rd is theradius of the ellipsoidal dete
tion volumeand a one-dimensional 
ow is assumed.This indi
ates that the spe
tral limit infrequen
y is determined by the dimen-sions of the measurement volume and themean velo
ity and that a 
orrespondingparti
le density must be 
hosen to attainthis limit.



5 Con
lusionThe pro
edures for estimating powerspe
tral density, auto
orrelation fun
tionand various quantities derived from thesefun
tions from laser Doppler data hasbeen reviewed. Two spe
tral estima-tors for single-
omponent, single-pointsystems have been reviewed. Some re-marks about how these estimators 
an beextended to multi-
omponent or multi-point measurements have been made. Fi-nally, the 
onsequen
es of using theseimproved estimation pro
edures on thelayout of the opti
al system have beenbrie
y dis
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