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Abstract

The effect of individual tracer particle intensity variations in consec-
utive images on the accuracy of the displacement estimates in particle
image velocimetry is investigated. Particularly, the efficacy of Gaussian
low-pass filter image interpolation for the reduction of under-sampling,
the normalization of the correlation estimates for reduction of truncation
errors, and interrogation area weighting schemes for improved spatial res-
olution are studied. The achievable accuracy of PIV measurements is
shown to be limited by this effect to approximately 0.1 pixels.

1 Introduction

Particle image velocimetry (PIV) has become the prime choice for processing
image-based flow measurements in fluid dynamics experiments. The basic al-
gorithm of digital PIV processing [1, 2, 3, 4], utilizes the cross-correlation of
image sub-spaces for local displacement estimation from two consecutively ac-
quired images of a particle-laden flow field. During the last years PIV has been
improved by increasing both, the attainable accuracy of velocity estimates and
the spatial resolution [5].

Using appropriate sub-pixel interpolation of the correlation planes, the achiev-
able accuracy of the measurement of the particle displacement can be signifi-
cantly improved over the nominal resolution of the optical sensor. Widely used
in PIV are the peak centroid (center-of-mass) method [6, 7] and the Gaussian
interpolation [2]. The remaining systematic error of the displacement estimate
is periodic with respect to the discrete resolution of the sensor, yielding the
“pixel locking” or “peak locking” [8, 9, 10, 11, 12] and limits the achievable
accuracy.

An additional error occurs due to the edges of the interrogation areas, where
particle images are truncated. This error has been identified as an accuracy-
limiting factor [13]. The normalization of the correlation values with individual
estimates of the image intensity variance [2, 14, 15, 10, 17] has been found to
be an efficient correction method [16, 18].



A further improvement can be achieved by iteratively applying window-shift
and window-deformation techniques [19, 20, 5], or image deformation [21, 22].
These techniques iteratively optimize the estimated velocity field towards van-
ishing displacements between image sub-spaces, which are shifted and deformed
accordingly to the assumed velocity field. Because of the vanishing displace-
ment, the results are almost independent of the utilized correlation plane sub-
pixel interpolation scheme (correlation peak centered around zero) and of parti-
cle image truncations at the edges of the interrogation area (similar patterns in
both interrogation areas are correlated). Nevertheless, the shifted and deformed
image sub-spaces are obtained by re-sampling the original images at appropri-
ate sub-pixel position. Thus, an appropriate image sub-pixel interpolation is
required.

Since the accuracy of the velocity estimates directly depends on the quality
of the image interpolation, the simple, but widely used, bi-linear interpolation
yields poor results. Higher-order interpolation schemes have been shown to be
advantageous [9, 23, 24, 25, 26]. In particular, bi-cubic splines and the Whittaker
interpolation [27] (also known as sinc or cardinal interpolation) have found wide
acceptance. Recently, a Gaussian low-pass filter for image interpolation and re-
sampling was introduced [28] to further improve the accuracy by reducing the
system-inherent under-sampling of the particle images.

Since the correlation of image sub-spaces implicitly averages the displace-
ment information over the interrogation areas, the achievable accuracy of uni-
formly displaced particle image patterns does not sufficiently reflect the quality
of the estimation in a flow field with varying velocity. The question of the ability
to resolve velocity fluctuations has become of major interest during the last few
years [29]. The spacial resolution of the iterative window shift and deformation
techniques is fundamentally limited by the the size of the interrogation areas.
Iterative image deformation techniques can improve the situation with a high
degree of freedom in the deformation of the interrogation areas, by applying a
relatively high overlapping of neighboring interrogation areas. In this case, the
usual correlation of rectangular interrogation areas has a significant instability
at certain spatial frequencies [30, 31, 32]. Therefore, an appropriate low-pass
filtering of the velocity data is necessary. Unfortunately, this again substan-
tially limits the spatial resolution. A promising alternative is given by applying
a certain weighting to the interrogation areas, which yields only positive val-
ues of the frequency response function in the entire range of spatial frequencies
[30, 31, 33, 34].

All three techniques (Gaussian interpolation, normalization and interroga-
tion area weighting) have been shown to work to high accuracy. In studies based
on synthetic images an accuracy of the order of 0.01 pixel has been reported
[20]. In contrast, the application to real images from experiments shows less
optimistic results, where the usually observed limit is of about 0.1 pixel. Only
under special conditions, like in two-dimensional flows with carefully aligned
laser sheets, a better accuracy has been achieved [35].

A possible reason for the different achievable accuracy in simulations and
experiments may be the fact that in experiments, particles usually change their



Figure 1: Particles moving in a laser sheet with an intensity profile: a) with
an out-of-plane component (all components may have gradients) and b) a two-
dimensional flow aligned with the laser sheet plane (only in-plane components
may have gradients, out-of plane component must be zero)

First exposure: Second exposure:

Figure 2: Example for individual particle intensity variations (detail of public
PIV images from the PIV challenge 2003, case A, axisymmetric turbulent jet in
stagnant surrounding, images A0Ola and A001b, marked regions with examples
of individual particle intensity variations)




position within the laser sheet (figure 1a). Therefore, the particles are illumi-
nated differently in the two consecutive exposures. Additionally, the different
illumination is individually different for each particle due to their different start-
ing positions perpendicular to the light sheet plane, even if there is no gradient
of the out-of-plane velocity component. The result is an individual variation of
particle intensities. The same effect occurs if the two consecutive light sheets
are misaligned.

Simulations often assume individual intensities for each particle, but identi-
cal intensities in the two exposures, as it can be realized in experiments only in
two-dimensional flows with laser sheets exactly aligned parallel to the flow field
(figure 1b). On the other hand, individual intensity variations can be easily
seen in images from a variety of PIV applications, where some particles be-
come brighter between the two exposures, whereas other particles, even close
by, become darker (figure 2).

The possible precision of the basic PIV processing technique with window
shift and deformation and the three above mentioned extensions are verified
under the condition of varying particle image intensities. To keep the investiga-
tions clear and simple and to isolate the effect of individual variations of particle
image intensities, the PIV process has been simulated in this study. Except for
the intensity variations, all other conditions are ideal, namely here only the case
of uniform velocity is investigated with sampled Gaussian-like particle intensity
profiles without noise or background gray level. The conclusions are equally
applicable to the case of velocity fields with gradients. In that case, however,
other well known effects, like limited spatial resolution may additionally influ-
ence the results. Errors due to the diffraction-limited imaging or integration
over the sensor areas also superimpose.

Note that the case with a variation of individual particle image intensities is
different from the loss-of-pairs and from the degradation of the correlation peak
due to the out-of-plane motion [36, 3, 37, 38] or illumination variations [15]. On
the one hand, the loss-of-pairs increases the sensitivity to noise and the prob-
ability of outliers, and occurs additionally to the here discussed effect. On the
other hand, the illumination variation can be corrected with appropriate image
pre-processing techniques, while the here shown effect cannot. Nonetheless, im-
age generation procedures that consider the out-of-plane motion of particles in
a laser sheet with an intensity-varied profile are able to simulate such conditions
and the shown effect.

2 Effect of varying intensities

In PIV the displacement of particle patterns between consecutive images is ob-
tained from the peak position in the two-dimensional cross-correlation plane
of the two images. Assuming (i) a certain number of imaged particles in the
interrogation area, each with different intensity, but with the same relative in-
tensity in the two consecutive images and (ii) no truncation at the edges of the
interrogation areas, the correlation peak is at the correct position, even if the
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Figure 3: Intensity and cross-correlation function of two signals, each consisting
of two peaks with Gaussian intensity profiles: a) same intensity of the profiles
in the two signals with well separated peaks and b) one signal scaled and with
overlapping peaks

particle images overlap and if the intensity of one entire image is scaled by a
constant factor. For demonstration, in figure 3 two signals, each consisting of
two well separated peaks with Gaussian intensity profiles are correlated. The
peaks are at identical positions in the two signals (no displacement between
the signals). The correct position of the correlation maximum at zero displace-
ment can be seen clearly even for overlapping intensity profiles and also with a
constant scaling of one signal (figure 3b).

This holds true also for the correlation of Gaussian intensity profiles with
different amplitudes!, as long as the intensity profiles do not overlap in the
individual signals (figure 4a). With overlapping intensity profiles of varying
amplitude (figure 4b), the maximum position of the correlation peak is clearly
shifted, yielding a biased displacement estimate depending on the amplitudes
of the intensity profiles, widths and overlap.

The consequence for PIV image processing is an additional error of displace-
ment estimates, if the intensities of particle images vary between the consecutive
PIV images, while the particle images overlap. This error is especially large in
densely seeded flows or de-focussed images (where the particle images tend to
overlap) and in the case of misaligned laser sheets or flows with an out-of-plane
motion of the particles (where the illumination of individual particles changes
between the two light pulses).

1Such variations of the intensity are typical for misaligned light sheets or particles moving
out-of-plane, located at different intensity slopes of the light sheet profile
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Figure 4: Intensity and cross-correlation function of two signals, each consisting
of two peaks with Gaussian intensity profiles: a) varying relative intensity of well
separated peaks and b) varying relative intensity of overlapping peaks yielding
a correlation peak with a shifted maximum location

3 Image generation

The simulated particle images are two-dimensional Gaussian functions sampled
at the center positions of the pixels (diameter given by e~2 of the maximum
(center) intensity). Neither diffraction-limited imaging nor intensity integration
over the sensor areas have been considered here to keep the investigation as
simple as possible and to isolate the investigated effect of individual particle in-
tensity variations. The particles are uniformly distributed over the observation
area. The simulated displacement of the particles between the two exposures
is randomly chosen between —1 and +1 pixels, but constant for all particles,
simulating a homogeneous velocity field. Overlapping particle images are super-
imposed linearly. The maximum intensities of the consecutive particle images I
and Ip are calculated for each simulated particle independently from a double
random process using Ipn = (pCa and Iz = (p(p with the uniformly distributed
random values (p, (o and (B between zero and unity. This simulates the cor-
relation between the intensities in the consecutive images due to the constant
particle size and the different illumination of this particle by the two exposures.
To keep the investigation as simple as possible and to isolate the investigated
effect of individual particle intensity variations, no noise or background gray
value have been added.

4 Image processing

Modern PIV algorithms with iterative window shift and window deformation
techniques [19, 20, 5] or image deformation [21, 22] make use of a sub-pixel re-




sampling of the consecutive images based on pre-estimates of the velocity field.
in this study, the simulated images are interpolated and re-sampled, either with
a random pre-estimate of the displacement (uniformly distributed between —1
and +1 pixels) or assuming the correct displacement from simulation as the pre-
estimate, which, in the ideal case, is asymptotically approached by an iterative
correction loop. A bi-linear interpolation has been used for reference, while
a bi-cubic spline interpolation, a Whittaker interpolation and a Gaussian low-
pass filter [28], all based on a 8 x 8 pixel image sub-space, have been used for
comparison.

The interpolated and re-sampled interrogation areas f(i;j) and ¢(i; j) with
a size of 48 x 48 pixels (i;7 € [0...47]) are cross-correlated using FFT routines
assuming periodic boundaries yielding

47
R(k;s1) = Y f(i:)g(i+k;j+1) (1)
i;5=0

where f(i + 1 x 48;j+ J x 48) = f(i;5) and g(i + I x 48;j + J x 48) = ¢(i;j)
with 4;j € [0...47] and I;J € Z or using the normalized correlation coefficient
(without periodic boundaries)
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where f(i;j) and g(7; j) are zero outside the interrogation area (f(i;j) = g(i;j) =
0Vi;jél0...47]).

In the case of using interrogation area weighting schemes [30], the image
data f(i;7) and ¢(4;j) in equation 1 are replaced by the weighted image data

w(i; ) f(4;5) and w(i; j)g(i; j) yielding
47
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where w(i; j) is a two-dimensional triangular function
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Note that this weighting function is similar (except for the different scaling,
which is non-relevant for the functionality) to the recommendation in [30], where
w?(i; j) has been defined instead. For the weighted correlation coefficient with

normalization the “doubled weighting” from [34] has been used with averaging
of the correlation coefficients yielding
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in the present notation. Compared to the other implementations of the weights,
introduced in [30] or [39], the “doubled weighting” is more accurate and has a
smaller tendency to yield outliers.

The estimation of the displacement between the two re-sampled images is
done by finding the maximum in the correlation plane, and then fitting a two-
dimensional Gaussian function to the 3 x 3 pixel surroundings [40].

5 Results

In all test cases, the root mean square (RMS) error of the displacement estimates
has been calculated from a series of 100 pairs of images.

5.1 Test case 1: No interpolation, no truncation

In the first test case, the effect of the varying intensity of particle images is
investigated without the influence of weighting schemes, truncation or inter-
polation errors. Approximately 42 particles (determined by a Poisson random
process) have been placed in the 32 x 32 pixel center part of the 48 x 48 pixel
interrogation area to avoid truncation at the edges of the interrogation window
and no weighting has been applied. The overlaying curves for the estimation
with and without the normalization in figure 5a indicate that the normalization
of the correlation function has no effect on the correlation estimator for identical
particle image intensities in the two consecutive images. Since the re-sampling
has been performed at the coordinates of the original images, all interpolation
schemes exactly reproduce the original images. In the case of a Gaussian low-
pass filter the particle images are broadend. The reduced under-sampling of
the Gaussian shaped particle images improves the displacement accuracy. The
RMS error drops below 0.01 pixels for particle image diameters slightly larger
than 2 pixels.

In the case of varying particle image intensities (figure 5b) without interpola-
tion, for small particle images the estimation error is almost the same as before.
For larger particle images, the probability of overlaps increases. In combination
with the varying intensities, this yields a bias of the individual displacement
estimate and, finally, an increasing RMS error of the estimation process. The
situation is even worse for the Gaussian filter. Since this filter broadens the
particle images, the probability of overlaps is higher. For increased particle im-
age diameters without interpolation as well as for the Gaussian low-pass filter,
unfortunately, this error dominates the decreasing estimation error due to the
formally observed reduced under-sampling. Furthermore, if the normalization of
the correlation estimates is applied, additional outliers can be observed, which
can be seen as spikes with high RMS values in figure 5b.
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Figure 5: RMS deviation of the displacement estimate for test case 1 (without
interpolation or truncation): a) identical particle image intensity in both images
and b) intensity variation (lines without symbols: no normalization; lines with
symbols: normalization of the correlation function)

5.2 Test case 2: Identical particle image intensity in both
images, truncation and interpolation

In the second test case the influence of the interpolation and re-sampling is in-
vestigated. To simulate an iterative optimization of the velocity estimate, the
re-sampling is done by a symmetric window shift based on either a random
pre-estimate or the correct velocity value. The particle images each have ran-
dom intensities, but the same intensity in both images. They are randomly
distributed over the entire interrogation area and its surroundings with approx-
imately 0.04 particles per pixel. Therefore, the particle images are truncated at
the edges of the interrogation area. Weighting schemes have not been applied.

For a random pre-estimate of the velocity and without the normalization of
the correlation function (lines without symbols in figure 6a), first the RMS error
decreases with increasing particle image diameter for all interpolation schemes
due to a reduced under-sampling, except for the Gaussian filter. Then the RMS
error increases again, due to the dominating influence of a higher probability of
truncated particle images at the edges of the interrogation area. Higher-order
interpolation schemes like bi-cubic splines or Whittaker perform better than the
bi-linear interpolation and have their optimum between 2.5 and 3 pixel particle
image diameter. The Gaussian filter increases the probability of truncation,
since it broadens the particle image diameter.

The normalization of the correlation function (lines with symbols in fig-
ure 6a) significantly reduces the effect of truncated particle images. In this
case, for all interpolation schemes the effect of under-sampling dominates in
the entire range of particle image diameters, yielding an RMS error which de-
creases with increasing particle images. For the Whittaker interpolation, the
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Figure 6: RMS deviation of the displacement estimate for test case 2 (identical
particle image intensity in both images, truncation and interpolation): a) image
shift based on a random velocity pre-estimate and b) on the correct displacement
(lines without symbols: no normalization; lines with symbols: normalization of
the correlation function)

RMS error increases for large particle image widths above 4 pixels, which is an
effect of the limited interpolation base of 8 x 8 pixels. Since the under-sampling
is significantly reduced by the Gaussian low-pass filter, the positive effect of
the normalization is most pronounced for this re-sampling scheme. In the entire
range of particle image diameters the results are better than those obtained with
any other interpolation scheme. Especially for small particle image diameters,
the combination of reduced under-sampling (Gaussian low-pass filter) and cor-
rected truncation (normalization) yields significantly better velocity estimates.

Assuming an iterative optimization of the sub-pixel displacement that con-
verges towards the correct velocity estimate, the remaining RMS error can be
reduced further (figure 6b). In this case, the re-sampled images ideally match
without any displacement, except for interpolation errors. As before, the par-
ticle images are truncated at the edges of the interrogation areas, however, the
truncation is identical in both re-sampled images, which then entirely avoids
any bias due to the truncation. Therefore, the normalization of the correlation
function does not improve the estimation. Even worse, for larger particle image
diameters, the estimation with normalization has a slightly larger RMS error
than without. In all cases, the Gaussian interpolation yields the best results,
which also is limited by the 8 x 8 pixel interpolation base.
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Figure 7: RMS deviation of the displacement estimate for test case 3 (varying
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on a random velocity pre-estimate and b) on the correct displacement (lines
without symbols: no normalization; lines with symbols: normalization of the
correlation function)

5.3 Test case 3: Varying particle image intensities, trun-
cation and interpolation

This picture changes dramatically when varying intensities of the particle images
are considered (figure 7). In this case, for all interpolation schemes, including the
Gaussian filter, the effect of normalizing the correlation function is minor. It is
strongly dominated by the RMS error of the varying particle image intensities in
combination with their overlap. In particular, the Gaussian interpolation is very
sensitive to this influence due to the broadened particle images and the higher
probability of overlaps. The bi-cubic spline and the Whittaker interpolation
yield comparable results, which are significantly better than those of the other
schemes. In all cases, the normalization slightly reduces the RMS error for
random velocity pre-estimates, while it increases the RMS error slightly for the
correct velocity pre-estimate.

5.4 Test case 4: Identical particle image intensity in both

images, truncation, interpolation and interrogation area

weighting

In the following two test cases, interrogation area weighting is also used. Even
if usually a larger interrogation area size is used with the weighting to keep the
effective window size or the amount of usable image information constant, the
size has not changed in this study for comparison.

Due to the non-sharp edges of the weighting function, the influence of trun-
cated particle images without normalization is smaller than without the weight-
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Figure 8: RMS deviation of the displacement estimate for test case 4 (identical
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ing (lines without symbols in figure 8a compared to figure 6a). For large particle
images, this yields decreased RMS errors. With normalization (lines with sym-
bols), the results are almost identical to those without weighting. This indicates
that the normalization efficiently removes the truncation error.

For a window shift based on the correct velocity (figure 8b), the particle
image truncation does not affect the estimation, because the truncation is iden-
tical in both images. Therefore, the curves with and without normalization are
identical here and very close to the results without weighting in figure 6b. The
Gaussian filter is superior in the entire range of particle image diameters.

5.5 Test case 5: Varying particle image intensities, trun-
cation, interpolation and interrogation area weighting

For varying particle image intensities (figure 9) the diagrams have been re-
arranged. In figure 9a the RMS errors are shown for the estimates without
normalization, image shifts based on a random displacement pre-estimate and
the correct displacement together. The overlaying curves show clearly that the
error due to the varying particle image intensities in combination with their
overlap dominates all other errors. The spike in the diagram also shows the
increased probability of outliers in this case.

In figure 9b the results are shown for the estimation with normalization.
Since the error due to the varying intensities dominates the truncation error,
the normalization is not able to reduce the RMS value. On the other hand, the
probability of outliers is significantly larger with normalization than without.
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Figure 9: RMS deviation of the displacement estimate for test case 5 (varying
particle image intensities, interpolation and interrogation area weighting): a)
without normalization and b) with normalization (lines without symbols: image
shift based on a random velocity pre-estimate; lines with symbols: image shift
based on the correct displacement)

Since the Gaussian filter broadens the particle images and increases the proba-
bility of overlaps, the RMS errors of the Gaussian filter are even higher than for
the other interpolation schemes in the entire range of particle image diameters.
For larger diameters, the results of the other interpolation schemes converge,
while for the interesting range of 2 through 3.5 pixels, the bi-cubic spline and
the Whittaker interpolation yield comparable results that are both superior to
the other interpolations.

Compared to the estimation without weighting (figure 7), the triangular
weighting yields slightly larger RMS errors, which indicates a loss of informa-
tion due to the weighting. Since the RMS error depends on the size of the in-
terrogation area, this can be compensated by increasing the interrogation area
size for the weighting scheme. Usually, the dimensions are doubled compared
to the non-weighted interrogation area, also to avoid outliers. Even if the appli-
cation of the weighting scheme has an advanced frequency response and, hence,
yields a better resolution, it does not improve the achievable accuracy, which is
dominantly limited by the intensity fluctuations.

5.6 Test case 6: Varying particle image intensities, trun-
cation and interpolation

Since the normalization and the interrogation area weighting do not improve
the accuracy of the displacement estimation, the last test case investigates the
influence of experimental and analysing parameters, namely the particle density
and the size of the interrogation areas.
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Figure 10: RMS deviation of the displacement estimate for test case 6 (varying
particle image intensities, truncation and interpolation): a) influence of the
particle density and b) influence of the interrogation area size

In figure 10a the RMS deviation of the displacement estimate is shown as a
function of the particle density. The diameter of the particle images is 2.5 pixels
and the size of the interrogation area is 48 x 48 pixels without interrogation area
weighting and without the normalization. The re-sampling with the symmet-
ric window shift is based on the correct velocity in this simulation. Since the
estimation error is dominated by the fluctuations of the particle image inten-
sity in combination with their overlap, a higher particle density cannot improve
the accuracy due to an increasing probability of particle image overlaps. Be-
low a certain particle density, the displacement estimation becomes unrelaiable,
generating outliers, which significantly increase the RMS error.

In figure 10b the RMS deviation of the displacement estimate is shown as
a function of the interrogation area size. The diameter of the particle images
is 2.5 pixels and the particle density is 0.04 particles per pixel, again without
interrogation area weighting and without the normalization and with a sym-
metric window shift based on the correct velocity. Below a certain size of the
interrogation areas, the displacement estimation is unreliable and generates out-
liers. For larger interrogation area sizes, the estimation is reliable with a slightly
increasing accuracy for increasing sizes.

In all cases, the reachable accuracy is around 0.1 pixel for the bi-linear
interpolation, and slightly worse for the Gaussian filter. Both, the bi-cubic
spline and the Whittaker interpolation perform better with a remaining RMS
error between 0.04 pixel for large interrogation areas and 0.07 pixel for minimum
interrogation areas without outliers.
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6 Conclusion

The variation of particle image intensities in the two consecutive images in a
PIV measurement limits the obtainable accuracy and increases the probability
of outliers. Such intensity variations occur in experiments due to the motion of
the particles in the intensity profile of the light sheet or misalignments of the
two light pulses.

In the here investigated case of individually varying particle image inten-
sities the normalization of the correlation function is found to be ineffectual.
This observation holds, independently of a correct displacement pre-estimate,
and the appropriate image re-sampling or the interrogation area weighting. Ad-
ditionally, it increases the probability of outliers, especially in combination with
the application of the weighting scheme.

For large particle image diameters, the error due to the particle intensity
variations dominates the error due to the under-sampling of the particle images.
This especially affects the results of the Gaussian low-pass filter, while it is
almost independent of an interrogation area weighting applied.

In summary, the errors due to the variations of the particle image intensities
seriously limits the obtainable accuracy of PIV measurements and could explain
the usually observed limit of approximately 0.1 pixel in experiments. Both, the
normalization of the correlation function and the Gaussian filter interpolation
do not improve the situation and give no added advantage. Best, and among
each other comparable results can be obtained using either the bi-cubic spline
or the Whittaker interpolation. Interrogation area weighting schemes can be
applied to improve the attainable spatial resolution, but have similar limitations
in accuracies.
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