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ABSTRACT

A set of 34 simulated data sets for the testing of power
spectrum algorithms for LDA data has been created and made
available at the internet address http://www-nt.e-technik.uni-
rostock.de/~nobach/benchm.html.  In this paper the character-
istics and diagnostic intent of the data sets are described, as
are initial results from 7 research groups who have tested 10
algorithms using these data sets.  The results have highlighted
strengths and weaknesses of the algorithms as well as the test
cases.  The initial results indicate that two modified versions
of the slotting technique, a refinement for sample-and-hold
reconstruction, as well as two parametric methods all offer
significant improvement over the traditional slotting, direct,
and reconstruction estimators.  Modifications to the test cases
will be discussed with the participants during the conference
in preparation for further testing.

1. INTRODUCTION

Despite the relative complexity involved with estimating
power spectra from data sampled randomly in time, the de-
velopment of statistical estimators and computational algo-
rithms for calculating power spectra from laser Doppler ane-
mometer (LDA) data began in the early seventies, when the
LDA was still i n a stage of infancy.  This pioneering work
resulted in two estimators, the so-called “slotting technique,”
described by Mayo et al. (1974), Shay (1976), Scott (1974,
1976), and Gaster and Roberts (1975); and a direct transform
presented by Gaster and Roberts (1977).  Coincidentally,
most of these researchers discontinued their activity in this
area shortly after this series of publications.  Additionally, the
problem of velocity bias, identified by McLaughlin and Tied-
erman (1973), focused attention on simpler velocity statistics,
so that the topic of power spectrum estimation for LDA data
was of low priority for the LDA community for roughly a
decade.

In the mid to late eighties, a gradual rekindling of interest
took place as investigators tried to use the power spectrum as
a means to study the small scales of turbulence.  Comparative

studies such as Srikantiah and Coleman (1985) and Tropea
(1986), however, indicated that the early estimators possessed
a high degree of variance and a susceptibilit y to velocity bias.
Adrian and Yao (1987) also showed that the age old sample-
and-hold reconstruction of LDA data led to a filtered noise
effect, which obscures the high frequency portion of the
spectrum.

At Veldhoven in 1993, the rekindling of interest quickly
turned to heated debate as the modern generation of time and
frequency domain processors were shown not to improve the
quality of power spectrum estimates.  Attention thus returned
to algorithmic development.  Since then, a number of power
spectrum estimators have been proposed, ranging from the
modifications of the slotting technique to noise filtering re-
construction schemes and parametric methods, such that a
comparative overview is necessary.  Such comparative tests
were recently attempted by Benedict and Gould (1995),
Tummers and Passchier (1996a) and Britz and Antonia
(1996), but it has become evident that a single research group
can no longer implement and thoroughly test all of the esti-
mators which have been proposed.  Furthermore, the most
useful standards for comparison and necessary range of test-
ing conditions has not been clear.

With this in mind, the present authors are developing a set
of simulated and real benchmark LDA data sets to be used by
the authors of power spectrum algorithms in assessing the
relative performance of their method.  As a first attempt at
evaluating the effectiveness of this approach, a large number
of authors (>30) were invited to participate in computing
power spectra from a wide variety of simulated data sets.
Results from 7 of these authors have been received and will
be presented below.  Note that no authors (with the exception
of H. Nobach) were aware of the true underlying spectrum
before commencing.

The final purpose of the paper is therefore to establish a
standard with which new or improved LDA spectral estima-
tors can be compared in the future.  Readers interested in
obtaining details of the benchmark test or the data sets are
invited to access the data generation program at http://www-
nt.e-technik.uni-rostock.de/~nobach/benchm.html.



2. DEFINITIONS AND NOMENCLATURE

To this point we have spoken generally of the power
spectrum as the quantity of interest.  Here, however, we es-
tablish terminology and mathematical definitions of the
quantities of interest.  Participants were asked to estimate the
one-sided, autospectral density function (ASDF) defined as
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for the autocorrelation with cosine transform or direct Fourier
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To aid in evaluating results, participants were also asked
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corresponding to their ASDF estimates.  Also, quantities such
as the integral time scale, Tu , and the Taylor time scale, λ u ,
were used as figures of merit in the analysis.  Their defini-
tions are given below.
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3. DESCRIPTION OF BENCHMARK DATA SETS

Simulated data sets have been used exclusively for this
first round of benchmark testing since, for simulated signals,
the true spectrum is known an thus systematic errors (biases)
can be evaluated.  The techniques used for simulation are
well established and tested and are based on a conveyor belt
model, as described in detail by Fuchs et al. (1992).  With
this method, a primary time series of evenly spaced samples
with extremely high sample rate is first generated.  The de-

sired spectral content is obtained by applying the true spec-
trum as a filter to a Gaussian distributed random noise se-
quence.

Particles are numerically seeded randomly in space and
convected through the LDA measurement volume with the
prescribed velocity series to yield a data set consisting of
arrival time and velocity (one component).  The data valida-
tion rate (DVR), �N , is the particles per second and the mean
data density is given by

� �N NT TD u u m= = τ (6)

where τm denotes the mean time between validated bursts ,

i.e.1 �N .
Ultimately the Nyquist frequency of the primary time

series determines the maximum frequency which any algo-
rithm can hope to resolve, and round-off errors in the double
precision velocity estimates limit the number of decades in
amplitude which can be calculated.  It is imperative that the
Nyquist frequency of the primary time series be set high
enough so as not to artificially limit the performance of the
estimators.  Results returned by the participants indicate that
the resolution of the primary series was unfortunately insuf-
ficient for certain cases in these first benchmarking tests,
although, in general, it was possible to make a useful com-
parison.  Modifications to the simulated data sets will t hus be
made before  testing continues.

Simulated data are described by number of samples, N,
and data density, �ND .  They are divided into groups (of
which there are 3) and cases (34 in all ).  For each case, there
are 10 data sets.  Participants were asked to provide ASDF
estimates for each of the ten data sets as well as the average
ASDF and average ACCF.  The ASDFs for each case were
used to calculate the statistical variance of the participants’
spectral estimators.

General Characteristics:  U = 0 , u2 1= m s2 2 , N = 250000

Group S-1 (one case)
Band-limited random noise with Gaussian amplitude distri-
bution and a very steep roll -off at 2000 Hz.  This flat spec-
trum makes filtering effects immediately obvious.  (primary
series DVR: 10 kHz; Poisson sampled DVR:  1 kHz)

Group S-2 (24 cases)
This group exhibits a Pao-like spectrum, which decreases
exponentially (in log coordinates) with increasing frequency,
and is given by
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where α = 01. .  There are 6 basic cases for this group as
specified in Table 1.  Further cases were then created by
adding Gaussian noise, one-dimensional velocity bias, or
both.



Table 1  Parameters for Group S-2

Case fd
(Hz)

C1

(m2/s2)
Tu

(s)
DVR
(Hz)
Prim.

�ND

Pois.

DVR
(Hz)

Poisson
2-1     3 0.46 0.115     100   0.5       4.35
2-2   30 0.046 0.0115   1000   0.5     43.5
2-3 300 0.0046 0.00115 10000   0.5   435
2-4    3 0.46 0.115     100 10     87
2-5   30 0.046 0.0115   1000 10   870
2-6 300 0.0046 0.00115 10000 10 8700

Cases S-2-1 to S-2-6
3 different integral time scales at 2 different data densities, no
noise or velocity bias.

Cases S-2-7 to S-2-12
Same as Cases S-2-1 to S-2-6 but with added Gaussian noise.

By maintaining a constant u2  but changing the integral
scale, the signal to noise ratio (SNR) is varied and therefore
tests an estimator’s abilit y to resolve multiple decades in the
presence of noise

Cases S-2-13 to S-2-18
Same as Cases S-2-1 to S-2-6 but with one-dimensional ve-
locity bias (i.e. correlation between instantaneous velocity
and particle rate), no noise

Cases S-2-19 to S-2-24
Same as Cases S-2-1 to S-2-6 but with noise and velocity bias

Group S-3 (9 cases)
The spectrum of this data group exhibits a distinct peak at
f p = 100 Hz and is described by
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Cases S-3-1 to S-3-3
�N f p> 2π , �N f p≈ , �N f p≈ 5  without noise

Cases S-3-4 to S-3-6
As above but with a low noise level

Cases S-3-7 to S-3-9
As above but with a high noise level

4. DESCRIPTION OF PARTICIPANTS’ ESTIMATORS

A total number of seven participants submitted results as
summarized in Table 2.  Before giving further details regard-
ing the algorithm used by each participant, a general classifi-
cation will be introduced, as represented schematically in

Fig.1.  Most techniques can be classified into one of the fol-
lowing:

• slotting technique and cosine transform
• direct transform
• reconstruction with equi-distant resampling and FFT

In each of the algorithmic routes, additional steps (shown as
dashed boxes) can be found, representing various enhance-
ments made by the participants to these basic algorithms. In
the following, the three major algorithmic procedures are
introduced, and variations implemented by the participants
are highlighted.

Table 2  Summary of participants and methods

Participant Method References
Ihalainen

et al. I
slotting technique Mayo et al. (1974)

Ihalainen
et al. II

S&H reconstruction Adrian & Yao (1987)

Ihalainen
et al. III

linear reconstruction Saarenrinne et al.
(1997)

Ihalainen
et al. IV

DQSE method Marquadt and Acuff
(1983), Saarenrinne

et al. (1997)
Nobach I refined S&H recon. with

noise suppression
Nobach et al. (1998)

Nobach II fuzzy slotting technique
Nobach III model parameter est. Müller et al. (1998)

Rajpal Lomb Scargle method Rajpal (1995)
Romano S&H reconstruction Adrian & Yao (1987)

Sree slotting technique Mayo et al. (1974),
Sree (1985)

Tummers &
Passchier

slotting technique with
local normalization and

variable window

Tummers & Passch-
ier (1996a, 1996b)

van Maanen Parametric van Maanen & Old-
enziel (1998)
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Fig. 1  Schematic for spectrum algorithms



4.1The Slotting Technique

The slotting technique, generally credited to Mayo et al.
(1974), consists of the following algorithm for estimating the
discrete autocovariance function,

( ) { }( )
( )C k

sum uu k

H k
uu

i j∆τ
∆τ

∆τ
=     k = 0,1,…,M-1 (9)

where  { }( )sum uu ki j ∆τ  represents the sum of all cross products

with lag times falli ng in the time interval (i.e. slot)
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cross products falli ng within this slot, and ∆τ  is the slot
width.  The parameter M is the number of slots and is chosen
by the user.

A one-sided ASDF estimator is formed for the slotting
technique by taking its discrete cosine transform as follows.
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where ( )w k∆τ  represents a discrete lag window.

Sree.  Note that the first slot (k = 0) in the slotting tech-
nique is treated separately in Eq. (10) because its width is
∆τ 2 .  Normally, the lag products falli ng within this first slot
are ignored (with regard to biases arising from processor dead
times and probe volume effects) and the sum of autoproducts
is used in place of the sum of cross products.  A drawback of
using the autoproducts is that they include a noise contribu-
tion which biases the autocovariance and ASDF to higher
values.  Sree thus using only the cross products for the first
slot.  Otherwise his approach is the standard slotting tech-
nique and, referring to the schematic of Fig. 1, follows the
path of slotting technique, autocorrelation estimate, cosine
transform.

Ihalainen et al. I.  The strategy of this group was to in-
clude both autoproducts and cross products in the first slot.

Nobach II .  A severe limitation of the standard slotting
technique is its high variance (roughly constant at high fre-
quency), which leads to poor estimates of turbulence spectra
at frequencies well below the mean sampling rate.  In order to
reduce the variance of the slotting technique, Nobach em-
ploys a lag products weighting scheme called the fuzzy slot-
ting technique and defined as
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This scheme allows lag products to contribute to two slots
simultaneously and weights lag products that lie close to the
slot centers more heavily as seen in Fig. 2.

Slot Slot Slot 

1

0

Slot 
∆τ ∆τ2 ∆τ3 ∆τ4

∆τ2 ∆τ3 ∆τ4∆τ tj - ti

Fig. 2  Fuzzy slotting technique schematic

Tummers & Passchier.  Another method for reducing
variance in the slotting technique has been dubbed local
normalization by Tummers and Passchier (1996a, 1996b) and
van Maanen and Tummers (1996).  In this case, an ACCF
normalized by a variance estimate particular to each slot is
used as the basis for the cosine transform.  This results in the
following slotting algorithm
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and corresponding one-sided ASDF estimator
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While Eq. 12 has been shown to have significantly lower
variance for small l ag times than Eq. 9 normalized by Cuu(0),
the variance at large lag times is unchanged; therefore, the
use of local normalization alone does not lead to an improved
ASDF.  Tummers and Passchier indicate, however, that
combining a variable lag window whose lag width decreases
with increasing frequency with the local normalization does
produce a much improved ASDF.

van Maanen.  Here the starting point is also the slotting
technique with local normalization, but instead of attacking
the variance problem with creative windowing schemes, van
Maanen and Oldenziel (1998) recommend curve-fitting the
locally normalized ACCF in order to remove variabilit y in the
ASDF estimates almost completely.  To this end, they have
developed an eight-parameter autocorrelation model which is
extremely flexible and can be analytically Fourier trans-
formed.

4.2 Direct Transform

Direct transform methods of ASDF estimation are based
on the adaptation of the periodogram approach for equi-
spaced data to the case of random sampling.  The standard
estimator in this regard is that of Gaster and Roberts (1977)
given by
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where ( )d t j  is a data window.  This estimator has yet to be

represented in these benchmarking tests; however, Tummers
and Passchier (1996a) have shown that its variabilit y, even



with block averaging, is no better than the slotting algorithm.
Benedict and Gould (1995) have also shown that uncorrelated
noise results in a negative bias in ASDF estimates using this
method.  Its advantage is speed in its blockaveraged form.

Rajpal.  Scargle (1982) modified the periodogram to make
it equivalent to a least squares fitting of sine curves to a data
set.  His scheme has been applied by Rajpal (1995) and
Saarenrinne et al. (1997) to simulated data and turbulent
flows.

Ihalainen et al. IV.  Another modification to the periodo-
gram is described by Marquardt and Acuff (1983).  It this
approach, a data spacing factor is incorporated into the perio-
dogram.  For Poisson sampling, the factor becomes the in-
verse of the sampling rate squared.

4.3 Reconstruction with FFT

Reconstruction approaches create equi-spaced time series
by resampling according to various interpolation schemes,
thereby allowing that an FFT be used in making ASDF esti-
mates.  The most common scheme by far is sample-an-hold
(zero-order).  This is the simplest of the polynomial class of
reconstruction algorithms.

Adrian and Yao (1987) were the first to call attention to
the filter characteristics of reconstruction algorithms.  Since
then it has been well documented by van Maanen and
Tulleken (1994), among others, that the filter effect becomes
significant at frequencies under �N 2π  in the case of Poisson
sampling.  If noise is present in the signal, the ASDF esti-
mates can break down well before this filter cut-off .  In such
a case, additional filtering (see Fig. 1) can be implemented
prior to calculating the autocorrelation function.  The appli -
cation of Kalman filtering, for instance, has been investigated
by van Maanen and Tulleken (1994) and Benedict and Gould
(1995), but has not yet been applied to the benchmarking
data.

Ihalainen II and III . implemented the standard sample-
and-hold and linear reconstruction schemes respectively.

Romano also implemented the standard sample and hold
algorithm.

Nobach I.  Recently, Nobach et al. (1998) developed a
refinement that cancels the filter effect associated with sam-
ple-and-hold reconstruction.  The approach is to derive an
expression for the resampled autocorrelation function in
terms of the true autocorrelation function.  The relation is
then inverted to estimate the true autocorrelation.  The ASDF
follows from a cosine transform.  Referring to Fig. 1, the
procedure follows the steps reconstruction, autocorrelation
estimate, refinement, spectral estimate. A step for noise sup-
pression can be added when necessary.  In principle, a re-
finement can be derived for any reconstruction algorithm, but
it is not always possible to invert the resulting expression.

5 DISCUSSION OF PARTICIPANTS’ RESULTS

The flat spectrum (up to a cut-off) data set of Group1 was
intended as a prerequisite diagnostic case to ascertain whether
a participant’s estimator exhibited a filtering effect above a
particular cut-off f requency.  Only the reconstruction tech-

niques without refinement displayed such filtering.  Fig. 3
shows the results for sample-and-hold and linear reconstruc-
tion submitted by Ihalainen et al.  One may notice that these
reconstruction techniques not only filter above a cut-off f re-
quency, but also indicate a positive bias error.  This error is
reflected in the integral scale errors presented in Table 3 (at
the end of the paper).  Note that the severity of this bias error
is determined by the energy content of the signal at frequen-
cies greater than approximately �N 2π .  Thus for the spectra
presented in Fig. 4, the bias is only significant for the low
data rate case.  Also note in Fig. 1 that the linear reconstruc-
tion has a slightly lower bias error, but that the filter cut-off
frequency (visually perceived at �N 10  or 100 Hz) is the
same.  Thus one should not be fooled by Fig. 4 into thinking
that the sample-and-hold scheme has performed better at high
data rate than the linear estimator.  It is merely coincidence
that the sample-and-hold filtering effect better matches the
spectrum over this frequency range.
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Fig.3  Reconstruction estimators applied to Case S-1
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Fig. 4  Results of Romano (low DVR) and Ihalainen et al. for
Case S-2-03

Group three was also a set of mainly qualitative diagnos-
tic devices designed to check whether the methods were ca-
pable of ascertaining a spectral peak in a wide-band spectrum
as various noise levels and data densities.  These results re-
quire further analysis; however, it appears that all methods



with the exception of the reconstruction methods, which
functioned only for the highest data density, were able to
determine the peak of 100 Hz.  The reconstruction and direct
methods were also strongly influenced by noise; although the
peak was still recognizable.  Finally, the variable window
approach of Tummers and Passchier resulted in a significant
frequency broadening of the peak, but this was deemed to be
a tolerable result.

The Group 2 cases were designed to be indicative of ac-
tual turbulence spectra and to allow for some quantitative
comparisons of the different methods.  It must be admitted
that an error in communication between the present authors
led to the creation of data sets with relatively low resolution
in the primary series.  This lessened the value of the compari-
son to some extent, as a maximum of roughly 5 decades in
amplitude could be recovered from the primary time series,
but was discovered to late to be corrected in time for the pre-
sent analysis.  Fig. 5 presents a comparison of the true theo-
retical spectrum and the actual spectrum of the primary time
series for Case S2-1.  The spectrum of the primary time series
is matched well i f the exponent in Eq. (7) is considered to be
4.11/3 instead of 4/3.
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Fig. 5  Comparison of theoretical Group 2 spectra to those
obtained from primary time series

Two standards of comparison were estimates of integral
scales and microscales, calculated by the present authors from
results submitted by the participants (recall that participants
were not aware of the exact values during their work).  The
errors in these time scale estimates are presented in Tables 3
and 4.  Some caution should be used in interpreting the mi-
croscale results as sometimes biases in different parts of the
spectrum canceled in the integration, leading to tolerable
microscale estimates.  This was the case for the linear recon-
struction results of Ihalainen et al. III for example.

Generally speaking, the reconstruction without refinement
and direct methods did not perform well for these tests.  The
reconstruction methods were able to estimate the integral
scale only under high data density conditions and the mi-
croscale not at all .  Noise tended to make both estimates
worse.  The refinement of Nobach I led to much better re-
sults.  This is not fully reflected in the table as all the cases
for this method have not yet been submitted but are reported
to be equivalent to Nobach II .  It must be mentioned, how-

ever, that the noise suppression scheme employed by Nobach
I is not fully convincing.  A combination of noise and veloc-
ity bias also seems to pose problems.

A surprising result of the comparisons thus far has been
the performance of the parametric approaches.  The results of
Nobach III are excellent in general with problems only oc-
curring for the cases in which velocity bias appears at low
data density.  The method of van Maanen also appears to be
very reliable as the limited results submitted thus far were
somewhat unfairly influenced by the resolution of the primary
time series.  It should be noted that this scheme is designed to
most accurately predict the high frequency portion of the
spectrum so it is not surprising the integral scale results leave
something to be desired.  This does not represent a drawback
as a better estimate of the integral scale would be available
from the locally normalized ACCF when using this method.

As was expected, the standard slotting technique showed
a high variance and an inabilit y to cope with noise or bias.
Noise problems could be circumvented by using the lag
products in the first “half-slot” in place of the autoproducts,
however this would rarely be a useful solution under real
measurement conditions where processor dead time or the
probe transit time limit the minimum inter-arrival time which
can be obtained.

The fuzzy slotting technique of Nobach III and the locally
normalized slotting technique with variable window imple-
mented by Tummers and Passchier both produced excellent
overall results.  The method of Tummers and Passchier would
appear to be the best of all methods; however, the results
presented here can only be considered preliminary.  Fig. 6
presents the normalized standard deviation of their ASDF
estimates for Case S-2-1 as compared to those of Ihalainen et
al. I, achieved with the standard slotting technique at similar
frequency resolution.  The improvement is obvious.
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Fig. 6  Comparison of variance of two slotting algorithms

6. CONCLUSIONS

A set of 34 simulated data sets for the testing of power
spectrum algorithms for LDA data has been created and made
available at the internet address http://www-nt.e-technik.uni-
rostock.de/~nobach/benchm.html.  Initial results from 7 re-



search groups who have tested 10 algorithms using these data
sets have indicated strengths and weaknesses of the algo-
rithms as well as the test cases.  Of the algorithms tested,
modifications to the slotting technique, known as local nor-
malization and the fuzzy slotting technique as well as two
parametric methods and a refined reconstruction algorithm
appear to offer significant advantages over traditional slot-
ting, direct, and reconstruction estimators. Modifications to
the test cases will be discussed with the participants during
the conference in preparation for further comparative tests.
Real LDA data sets will also be considered in the future.
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Table 3  Integral scale (Tu) errors for Group 2 (in percent)

Case Iha I Iha II Iha III Iha IV Noba I Noba II Nob III Rajpal Roman Sree Tumm Maanen
S2-01     0.49     1.6     1.3 160    -1.0    -7.5
S2-02     1.7 -74     1.6     1.3 160    -7.5
S2-03     1.1     1.6     1.3 160    -7.5
S2-04     2.0     0.57     2.5 -95     1.5    -6.1
S2-05    -1.0     0.57     2.4 -50     1.5    -6.1
S2-06  -15    4.0    3.5     0.57     2.4 400     1.5    -6.1
S2-07     0.44     1.5     1.1 150    -1.1    -7.6
S2-08     1.7     1.5     1.1 150    -7.6
S2-09     0.15     1.5     1.1 150    -7.6
S2-10     1.9     0.64     2.4 -95    -6.4    -6.2 -16
S2-11    -0.66     0.64     2.2    -6.4    -6.2
S2-12  -15    4.7    -0.64     2.3    -6.4    -6.2 -22
S2-13 270    -0.12     1.5 260    -6.2
S2-14 260    7.8    -0.12     1.4    -6.2
S2-15 270    -0.12     1.4    -6.2
S2-16 260     3.7     2.4    -6.6
S2-17 260     3.7     2.4    -6.6
S2-18 270  24  20     3.7     2.5    -6.6
S2-19 270 160 160 160 260    -0.26
S2-20 260 160 160 160    -0.26
S2-21 270 160 160 160    -0.26
S2-22 260   18   17    -1.4    -1.5
S2-23 260   18   17    -1.4    -1.5
S2-24 260   18   17    -1.4    -1.5

Table 4  Taylor micoscale (λu) errors for Group 2 (in percent)

Case Iha I Iha II Iha III Iha IV Noba I Noba II Nob III Rajpal Roman Sree Tumm Maanen
S2-01    -1.7 -16    1.1   -9.1    5.1   -6.3
S2-02    -1.6 120 -16    1.1   -9.1   -6.3
S2-03 -16 -16    1.1   -9.1   -6.3
S2-04    -1.8 -13 -11 -18 -28   -5.5
S2-05    -2.5 -13   -6.6 -74 -28   -5.5
S2-06 -10 -28  11 -13   -6.6 -92 -28   -5.5
S2-07     0.63    8.6    3.1   -9.7    6.4   -4.3
S2-08 -12    8.6    3.1   -9.7   -4.3
S2-09 -54    8.6    3.1   -9.7   -4.3
S2-10    -2.0  27   -5.5 -18 -49   -5.3    -5.4
S2-11 -14  27   -2.7 -49   -5.3
S2-12 -47 -51  27   -2.7 -49   -5.3    -7.6
S2-13     0.47 -32 -29 -18   -3.9
S2-14 ----- -14 -32 -26   -3.9
S2-15 ----- -32 -27   -3.9
S2-16    -3.0   -1.1   -2.4   -4.6
S2-17 -----   -1.1   -2.4   -4.6
S2-18 ----- -31  19   -1.1   -2.4   -4.6
S2-19     1.9 -52 -38   -4.6 -18    3.4
S2-20 ----- -52 -28   -4.6    3.4
S2-21 ----- -52 -36   -4.6    3.4
S2-22    -5.0  20    6.5 -46    1.5
S2-23 -----  20    6.5 -46    1.5
S2-24 -----  20    6.5 -46    1.5


