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ABSTRACT

A set of 34 simulated data sets for the testing of power
spedrum agorithms for LDA data has been creded and made
available & the internet address http://www-nt.e-technik.uni-
rostock.de/~nobach/benchm.html. In this paper the ctharader-
istics and dagnastic intent of the data sets are described, as
areinitia results from 7 reseach groups who have tested 10
agorithms using these data sets. The results have highli ghted
strengths and wegknesses of the dgorithms as well as the test
cases. Theinitia results indicae that two modified versions
of the dotting technique, a refinement for sample-and-hold
reconstruction, as well as two parametric methods all offer
significant improvement over the traditiona dotting, dired,
and reconstruction estimators. Modifications to the test cases
will be discussed with the participants during the mnference
in preparation for further testing.

1. INTRODUCTION

Despite the relative omplexity involved with estimating
power spedra from data sampled randamly in time, the de-
velopment of statisticd estimators and computational algo-
rithms for cdculating power spedra from laser Dopper ane-
mometer (LDA) data began in the ealy seventies, when the
LDA was dill in a stage of infancy. This pioneeing work
resulted in two estimators, the so-cdled “dotting technique,”
described by Mayo et a. (1974, Shay (1976, Scott (1974
1976, and Gaster and Roberts (1975; and adired transform
presented by Gaster and Roberts (1977. Coincidentaly,
most of these reseachers discontinued their adivity in this
areashortly after this sries of pulicaions. Additionaly, the
problem of velocity bias, identified by McLaughlin and Tied-
erman (1973, focused attention onsimpler velocity statistics,
so that the topic of power spedrum estimation for LDA data
was of low priority for the LDA community for roughly a
decade.

In the mid to late @ghties, a gradual rekindling of interest
took place & investigators tried to use the power spedrum as
ameans to study the small scaes of turbulence Comparative

studies such as Srikantiah and Coleman (1985 and Tropea
(1986, however, indicated that the ealy estimators possessed
ahigh degreeof variance and a susceptibility to velocity bias.
Adrian and Yao (1987 aso showed that the aye old sample-
and-hold remnstruction o LDA data led to a filtered ndse
effed, which olscures the high frequency portion o the
spectrum.

At Veldhoven in 1993 the rekindling of interest quickly
turned to heaed debate as the modern generation o time and
frequency domain processors were shown na to improve the
quality of power spedrum estimates. Attention thus returned
to algorithmic development. Since then, a number of power
spedrum estimators have been propased, ranging from the
modificaions of the slotting technique to ndse filtering re-
construction schemes and parametric methods, such that a
comparative overview is necessry. Such comparative tests
were recently attempted by Benedict and Gould (1999,
Tummers and Passhier (19968) and Britz and Antonia
(1996, but it has become evident that a single research group
can no longer implement and thoroughly test al of the esti-
mators which have been proposed. Furthermore, the most
useful standards for comparison and recessary range of test-
ing canditions has not been clear.

With thisin mind, the present authors are developing a set
of simulated and red benchmark LDA data sets to be used by
the aithors of power spedrum agorithms in assssng the
relative performance of their method As a first attempt at
evaluating the dfedivenessof this approad, a large number
of authors (>30) were invited to participate in computing
power spedra from a wide variety of simulated data sets.
Results from 7 of these authors have been receved and will
be presented below. Note that no authors (with the exception
of H. Nobach) were aware of the true underlying spedrum
before commencing.

The final purpose of the paper is therefore to establish a
standard with which new or improved LDA spedra estima-
tors can be compared in the future. Readers interested in
obtaining details of the benchmark test or the data sets are
invited to accessthe data generation program at http://mww-
nt.e-technik.uni-rostock.de/~nobach/benchm.html.



2. DEFINITIONS AND NOMENCLATURE

To this point we have spoken generaly of the power
spedrum as the quantity of interest. Here, however, we e
tablish terminology and mathematicd definitions of the
quantiti es of interest. Participants were asked to estimate the

one-sided, autospectral density function (ASDF) defined as

G, (f) = 4} C.,(T) cos(2nir)dt or

2

}u(t) exp(i 2rt)dt

o0

Gu(f) = 2 (1)

for the autocorrelation with cosine transform or dired Fourier
transform approaches respedively. Here C,,(1)is the aito-

covaiance function (ACF) given by

C,(T) = ut)ut+1) = }Guu(f)oos(zm'r)df 2

where u(t)is the fluctuating velocity, u(t)=U(t)-U and 1 is

the lag-time.

To aid in evaluating results, participants were dso asked
to provide the autocorrelation coefficient function (ACCF)
defined as

) - U+
] 3

correspondng to their ASDF estimates. Also, quantities sich
asthe integral time scde, T,, and the Taylor time scde, A,
were used as figures of merit in the analysis. Their defini-
tions are given below.
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3. DESCRIPTION OF BENCHMARK DATA SETS

Simulated data sets have been used exclusively for this
first round d benchmark testing since for simulated signals,
the true spedrum is known an thus g/stematic arors (biases)
can be evaluated. The tedhniques used for smulation are
well established and tested and are based ona wnveyor belt
model, as described in detail by Fuchs et al. (1992. With
this method, a primary time series of evenly spacel samples
with extremely high sample rate is first generated. The de-

sired spedral content is obtained by applying the true spec
trum as a filter to a Gausgan dstributed random noise se-
guence.

Particles are numericdly seeded randomly in space ad
conveded through the LDA measurement volume with the
prescribed velocity series to yield a data set consisting of
arrival time and velocity (one comporent). The data valida-
tionrate (DVR), N, isthe particles per second and the mean
data desity is given by

ND = NTu = Tu/Tm (6)

where 1, denctes the mean time between validated busts
i.e.YN.

Ultimately the Nyquist frequency of the primary time
series determines the maximum frequency which any algo-
rithm can hoye to resolve, and roundoff errorsin the doulde
predsion velocity estimates limit the number of decales in
amplitude which can be cdculated. It is imperative that the
Nyquist frequency of the primary time series be set high
enowh so as not to artificialy limit the performance of the
estimators. Results returned by the participants indicae that
the resolution o the primary series was unfortunately insuf-
ficient for cetain ceses in these first benchmarking tests,
dthough, in generd, it was posshle to make auseful com-
parison. Modifications to the simulated data sets will thus be
made before testing continues.

Simulated data ae described by number of samples, N,
and cita density, N,. They are divided into groups (of
which there ae 3) and cases (34in all). For ead cese, there
are 10 cbta sets. Participants were asked to provide ASDF
estimates for ead of the ten data sets as well as the average
ASDF and average ACCF. The ASDFs for eat case were
used to cdculate the statisticd variance of the participants
spectral estimators.

General Characteristicsy =0, w =1m?/s* , N =250000

Group S-1 (one case)

Band-limited random noise with Gausdan amplitude distri-
bution and a very steep roll-off at 2000Hz. This flat spec
trum mekes filtering effeds immediately obvious. (primary
series DVR: 10 kHz; Poisson sampled DVR: 1 kHz)

Group S-2 (24 cases)
This group exhibits a Pao-like spedrum, which deaeases
exporentialy (in log coordinates) with increasing frequency,
and is given by
4
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where a=01. There ae 6 hasic cases for this group as
spedfied in Table 1. Further cases were then creaed by
adding Gausgan ndse, one-dimensiona velocity bias, or
both.



Table 1 Parameters for Group S-2

Case| fq C1 Ty DVR N DVR
H2) | () | ) | (D) | pys | (HD)
Prim. ols: Poisson
2-1 3 | 0.46 0.115 100 0.5 4.35
2-2 30 | 0.046 | 0.0115 1000 0.5 43.5
2-3 | 300 | 0.0046 | 0.00115 | 10000 0.5 435
2-4 3 | 0.46 0.115 100 | 10 87
2-5 30 [ 0.046 | 0.0115 1000 | 10 870
2-6 300 [ 0.0046 | 0.00115 | 10000 | 10 8700

Cases S-2-1 to S-2-6
3 dfferent integral time scdes at 2 different data densities, no
noise or velocity bias.

Cases S-2-7 to S-2-12
Same & Cases S-2-1 to S-2-6 bu with added Gaussan nase.

By maintaining a @nstant u? but changing the integral
scde, the signal to ndse ratio (SNR) is varied and therefore
tests an estimator’s ability to resolve multiple decales in the
presence of noise

Cases S-2-13 to S-2-18

Same & Cases S-2-1 to S-2-6 bu with ore-dimensional ve-
locity bias (i.e. correlation between instantaneous velocity
and particle rate), no noise

Cases S-2-19to S-2-24

Same as Cases S-2-1 to S-2-6 but with noise and velocity b

Group S-3 (9 cases)
The spedrum of this data group exhibits a distinct pe&k at
f, =100 Hz and is described by

f
100Hz

]
f EZ o
100HzO

f
1Hz

5 g 2
5“@9 %‘5“@9

Gy (f) = 0256exp,, (8)

IIDI:IDDIIDQD
ina i

0
+ 2004 expls- 50@9

H

Cases S-3-1 to S-3-3
N>2rf,, N=f,, N=f_ /5 without noise

Cases S-3-4 to S-3-6
As above but with a low noise level

Cases S-3-7 to S-3-9
As above but with a high noise level

4. DESCRIPTION OF PARTICIPANTS’ ESTIMATORS

A total number of seven participants submitted results as
summarized in Table 2. Before giving further detail s regard-
ing the dgorithm used by ead participant, a genera classfi-
caion will be introduced, as represented schematicdly in

Fig.1. Most techniques can be dassfied into ore of the fol-
lowing:

¢ slotting technique and cosine transform
e direct transform
e reconstruction with equi-distant resampling and FFT

In ead of the dgorithmic routes, additiond steps (shown as
dashed baxes) can be found representing various enhance-
ments made by the participants to these basic dgorithms. In
the following, the three major algorithmic procedures are
introduced, and variations implemented by the participants
are highlighted.

Table 2 Summary of participants and methods

Participant Method References
Ihalainen slotting technique Mayo et al. (1974)
etal. |
Ihalainen S&H reconstruction Adrian & Yao (1987)
etal. Il
Ihalainen linear reconstruction Saarenrinne et al.
etal. Il (1997)
Ihalainen DQSE method Marquadt and Acuff
etal IV (1983), Saarenrinne
et al. (1997)
Nobach | refined S&H recon. with | Nobach et al. (1998)
noise supprasion
Nobach Il fuzzy slotting technique
Nobach Ill model parameter est. Muller et al. (1998)
Rajpal Lomb Scargle method Rajpal (1995)
as Romano S&H reconstruction Adrian & Yao (1987)
Sree slotting technique Mayo et al. (1974),
Sree (1985)
Tummers & slotting technique with | Tummers & Passe
Passchier local normalization and ier (1996a, 1996b)
variable window
van Maanen Parametric van Maanen & Ql-
enziel (1998)
3
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Fig. 1 Schematic for spectrum algorithms




4.1The Slotting Technique

The dotting technique, generaly credited to Mayo et d.
(1974, consists of the following algorithm for estimating the
discrete autocovariance function,

Co(kar) = % k=01,.M1 (9)

where wm{quj}(kAr) represents the sum of all crossproducts

with lag times fdling in the time interval (i.e. dot)
(k-0s)at <(t; -t} <(k+05)at, H(kat) is the number of
cross products falling within this dot, and At is the dot
width. The parameter M is the number of dots and is chosen

by the user.
A one-sided ASDF estimator is formed for the slotting

technique by taking its discrete cosine transform as follows.

Gu(f)= 4AT%CUU(O) + Agjcuu(kAT)w(kAt)cos(ZﬂkaT)E (10)

where w(kat) represents a discrete lag window.

Sree Note that the first dot (k = 0) in the dotting tech-
nique is treaed separately in Eq. (10) becaise its width is
At/2 . Normally, the lag products falli ng within this first slot
areignored (with regard to biases arising from processor dead
times and probe volume dfeds) and the sum of autoproducts
isused in placeof the sum of crossproducts. A drawbad of
using the autoproducts is that they include anoise cntribu-
tion which hiases the aitocovariance and ASDF to higher
values. Sreethus using only the aossproducts for the first
slot. Otherwise his approad is the standard dotting tech-
nique and, referring to the schematic of Fig. 1, follows the
path of dlotting technique, autocorrelation estimate, cosine
transform.

lhalainen et d. I. The strategy of this group was to in-

clude both autoproducts and cross products in the first slot.

Nobadch II. A severe limitation o the standard dotting
technique is its high variance (roughly constant at high fre-
quency), which leals to poa estimates of turbulence spedra
at frequencies well below the mean sampling rate. In order to
reduce the variance of the dotting technique, Nobach em-
ploys a lag products weighting scheme cdled the fuzz dot-
ting techniqueand dfined as

T T
—-l—-k|l f — -k
b(t) = O [ac ‘ A ‘ (11)
otherwise

This <heme dlows lag products to contribute to two slots
simultaneously and weights lag products that lie dose to the
slot centers more heavily as seen in Fig. 2.

Slot Slot Sot Slot
At 241 3At 4At

071 | | | |
At 201 3AT 44T G-t

Fig. 2 Fuzzy slotting technique schematic

Tummers & Passhier. Ancther method for reducing
variance in the dlotting technique has been dubled local
normali zation by Tummers and Passchier (1996, 19960 and
van Maanen and Tummers (1996. In this case, an ACCF
normalized by a variance etimate particular to eat slot is
used as the basis for the @msine transform. This results in the
following slatting algorithm

sun'{ quj} (kar) 12)

) Jsum{qz}(km)surr{uj 2} (kar)

and corresponding one-sided ASDF estimator

puu(kaT)

G(f) = 4cuu(o)m§ . “gpuu(km)m(km)cos(zmkm)g (13)

While Eg. 12 hes been shown to have significantly lower
variance for small | ag times than Eq. 9 namalized by C,(0),
the variance d large lag times is unchanged; therefore, the
use of locd normadlization alone does not lead to an improved
ASDF. Tummers and Pasghier indicae, however, that
combining a variable lag window whose lag width deaeases
with increasing frequency with the locd normalization dces
produce a much improved ASDF.

van Maaen. Here the starting point is also the slotting
technique with locd normalizaion, but instead of attadking
the variance problem with creaive windowing schemes, van
Maanen and Oldenzid (1998 recommend curve-fitting the
locdly normalized ACCF in order to remove variability in the
ASDF estimates amost completely. To this end, they have
developed an eight-parameter autocorrelation model which is
extremely flexible and can be aayticdly Fourier trans-
formed.

4.2 Direct Transform

Dired transform methods of ASDF estimation are based
on the alaptation d the periodagram approach for equi-
spacel data to the cae of random sampling. The standard
estimator in this regard is that of Gaster and Roberts (1977

given by
2 fu S I RPN
Gu(f) =— u'(t; )d(t; )explizmdt; ) -5 u?(t; )d*(t;)o (14)
N;Ta;()()( )zt

where d(t,) is a data window. This estimator has yet to be

represented in these benchmarking tests, however, Tummers
and Pas<chier (19963) have shown that its variability, even



with block averaging, is no better than the slotting algorithm.
Benedict and Gould (1995 have dso shown that uncorrelated
noise results in a negative bias in ASDF estimates using this
method. Its advantage is speed in its blockaveraged form.

Rajpal. Scargle (1982 modified the periodagram to make
it equivalent to a least squares fitting of sine arves to a data
set. His s<heme has been applied by Rapa (1995 and
Saaenrinne € a. (1997 to simulated data and turbulent
flows.

lhalainen et a. IV. Another modificaion to the periodo-
gram is described by Marquardt and Acuff (1983. It this
approad, a data spadng fador isincorporated into the perio-
dogram. For Poisoon sampling, the factor beames the in-
verse of the sampling rate squared.

4.3 Reconstruction with FFT

Reanstruction approaches creae egui-spaced time series
by resampling acwrding to various interpolation schemes,
thereby alowing that an FFT be used in making ASDF esti-
mates. The most common scheme by far is sample-an-hold
(zero-order). This is the simplest of the polynomial class of
reconstruction algrithms.

Adrian and Yao (1987 were the first to cdl attention to
the filter charaderistics of recmnstruction algorithms. Since
then it has been well documented by van Maaen and
Tulleken (1994, among others, that the filter effed becomes
significant at frequencies under N/2m in the cae of Poison
sampling. If noise is present in the signal, the ASDF esti-
mates can break down well before this filter cut-off. In such
a cae, additiona filtering (see Fig. 1) can be implemented
prior to cdculating the aitocorrelation function. The gpli-
caion d Kalman filtering, for instance, has been investigated
by van Maanen and Tull eken (1994 and Benedict and Gould
(1995, but has not yet been applied to the benchmarking
data.

lhalainen Il _and IlI. implemented the standard sample-
and-hold and linear reconstruction schemes respectively.

Romano also implemented the standard sample and hdd
algorithm.

Nobach I. Recaitly, Nobac et a. (1998 developed a
refinement that canceds the filter effed associated with sam-
ple-and-hold recnstruction. The gproach is to derive an
expresson for the resampled autocorrelation function in
terms of the true aitocorrelation function. The réelation is
then inverted to estimate the true aitocorrelation. The ASDF
follows from a @sine transform. Referring to Fig. 1, the
procedure follows the steps reaonstruction, autocorrelation
estimate, refinement, spedra estimate. A step for noise sup-
presson can be alded when necessary. In principle, a re-
finement can be derived for any reconstruction algorithm, but
it is not always possible to invert the resulting expression.

5 DISCUSSION OF PARTICIPANTS' RESULTS

The flat spedrum (up to a ait-off) data set of Grouplwas
intended as a prerequisite diagnostic case to ascertain whether
a participant’s estimator exhibited a filtering effed above a
particular cut-off frequency. Only the reconstruction tech-

niques withou refinement displayed such filtering. Fig. 3
shows the results for sample-and-hold and linea reaonstruc-
tion submitted by Ihalainen et al. One may natice that these
reconstruction techniques nat only filter above a ait-off fre-
quency, but also indicate apositive bias error.  This error is
refleded in the integral scde arors presented in Table 3 (at
the end o the paper). Note that the severity of this bias error
is determined by the energy content of the signal at frequen-
cies greder than approximately N/2mt. Thus for the spedra
presented in Fig. 4, the bias is only significant for the low
datarate ca@e. Also ndein Fig. 1 that the linea reconstruc-
tion hes a dightly lower bias error, but that the filter cut-off
frequency (visually perceved at N/10 or 100 HZ) is the
same. Thus one shoud na be fodled by Fig. 4 into thinking
that the sample-and-hold scheme has performed better at high
data rate than the linea estimator. It is merely coincidence
that the sample-and-hald filtering effed better matches the
spectrum over this équency range.
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Fig. 4 Results of Romano (low DVR) and Ihalainen et a. for
Case S-2-03

Group threewas also a set of mainly qualitative diagnos-
tic devices designed to chedk whether the methods were &
pable of ascertaining a spedral pes in a wide-band spedrum
as various noise levels and cita densities. These results re-
quire further analysis, however, it appeas that al methods



with the exception o the recnstruction methods, which
functioned only for the highest data density, were ale to
determine the peak of 100Hz. The reconstruction and dred
methods were dso strongly influenced by noise; athough the
pe&k was 4gill remognizable. Finaly, the variable window
approach of Tummers and Passchier resulted in a significant
frequency broadening of the pek, but this was deamed to be
a tolerable result.

The Group 2cases were designed to be indicaive of ac
tual turbulence spedra and to alow for some quantitative
comparisons of the different methods. It must be amitted
that an error in communicaion between the present authors
led to the aedion d data sets with relatively low resolution
in the primary series. This lessened the value of the compari-
son to some extent, as a maximum of roughly 5 decales in
amplitude ould be recovered from the primary time series,
but was discovered to late to be crreded in time for the pre-
sent analysis. Fig. 5 presents a mmparison d the true theo-
reticd spedrum and the adual spedrum of the primary time
series for Case S2-1. The spedrum of the primary time series
is matched well if the exporent in Eq. (7) is considered to be
4.11/3 nstead of 4/3.
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Fig. 5 Comparison d theoreticd Group 2 spedra to those
obtained from primary time series

Two standards of comparison were etimates of integral
scades and microscdes, cdculated by the present authors from
results submitted by the participants (recdl that participants
were not aware of the exad values during their work). The
errors in these time scde estimates are presented in Tables 3
and 4 Some caition shoud be used in interpreting the mi-
croscae results as metimes biases in dfferent parts of the
spedrum cancded in the integration, leading to tolerable
microscade estimates. This was the cae for the linea recon
struction results of lhalainen et al. lll for example.

Generally spe&king, the reconstruction withou refinement
and dred methods did na perform well for these tests. The
reconstruction methods were ale to estimate the integra
scde only under high data density condtions and the mi-
croscde not a al. Noise tended to make both estimates
worse. The refinement of Nobach | led to much better re-
sults. Thisis nat fully refleded in the table @ al the caes
for this method have nat yet been submitted bu are reported
to be guivalent to Nobach II. It must be mentioned, how-

ever, that the noise suppresson scheme eanployed by Nobach
I is nat fully convincing. A combination d noise and veloc-
ity bias also seems to pose problems.

A surprising result of the cwmparisons thus far has been
the performance of the parametric goproaches. The results of
Nobach Il are excdlent in general with problems only oc-
curring for the caes in which velocity bias appeas at low
data density. The method d van Maanen also appeas to be
very reliable as the limited results submitted thus far were
somewhat unfairly influenced by the resolution d the primary
time series. It shoud be noted that this shemeis designed to
most acarately predict the high frequency portion d the
spedrum so it is not surprising the integral scde results leave
something to be desired. This does not represent a drawbadk
as a better estimate of the integral scde would be available
from the locally normalized ACCF when using this method.

As was expeded, the standard slotting technique showed
a high variance and an inability to cope with ndse or bias.
Noise problems could be drcumvented by using the lag
products in the first “half-sot” in placeof the aitoproducts,
however this would rarely be auseful solution under red
measurement condtions where processor dead time or the
probe transit time limit the minimum inter-arrival time which
can be obtained.

The fuzzy dlotting technique of Nobach 11l and the locdly
normalized dotting technique with variable windowv imple-
mented by Tummers and Passchier both produced excdlent
overall results. The method d Tummers and Passchier would
appea to be the best of al methods; however, the results
presented here can orly be mnsidered preliminary. Fig. 6
presents the normalized standard deviation o their ASDF
estimates for Case S-2-1 as compared to those of Ihalainen et
al. I, adhieved with the standard dlotting technique a similar
frequency resolution. The improvement is obvious.
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Fig. 6 Comparison of variance of two slotting algorithms

6. CONCLUSIONS

A set of 34 simulated data sets for the testing of power
spedrum agorithms for LDA data has been creaed and made
available & the internet address http://www-nt.e-technik.uni-
rostock.de/~nobad/benchm.html. Initial results from 7 re-



seach groups who have tested 10a gorithms using these data
sets have indicaed strengths and wedknesses of the dgo-
rithms as well as the test cases. Of the dgorithms tested,
modifications to the dotting technique, known as local nor-
malization and the fuzz dotting technique as well as two
parametric methods and a refined reconstruction algorithm
appea to dffer significant advantages over traditional dot-
ting, dired, and recnstruction estimators. Modificaions to
the test cases will be discussed with the participants during
the onference in preparation for further comparative tests.
Real LDA data sets will also be considered in the future.
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Table 3 Integral scald) errors for Group 2 (in percent)

Case | Ihal lha Il lha lll lha IV Noba | Noba Il | Nob llI Rajpal Roman | Sree [ Tumm Maanen
S2-01 0.49 1.6 1.3 160 -1.0 -7.5

S2-02 1.7 -74 1.6 1.3 160 -7.5

S2-03 1.1 1.6 1.3 160 -7.5

S2-04 2.0 0.57 2.5 -95 15 -6.1

S2-05 -1.0 0.57 2.4 -50 15 -6.1

S2-06 | -15 4.0 3.5 0.57 2.4 400 15 -6.1

S2-07 0.44 15 1.1 150 -1.1 -7.6

S2-08 1.7 15 1.1 150 -7.6

S2-09 0.15 15 1.1 150 -7.6

S2-10 1.9 0.64 2.4 -95 -6.4 -6.2 -16
S2-11 -0.66 0.64 2.2 -6.4 -6.2

S2-12 | -15 4.7 -0.64 2.3 -6.4 -6.2 -22
S2-13 | 270 -0.12 15 260 -6.2

S2-14 | 260 7.8 -0.12 14 -6.2

S2-15 | 270 -0.12 14 -6.2

S2-16 | 260 3.7 2.4 -6.6

S2-17 | 260 3.7 2.4 -6.6

S2-18 | 270 24 20 3.7 2.5 -6.6

S2-19 | 270 160 160 160 260 -0.26

S2-20 | 260 160 160 160 -0.26

S2-21 | 270 160 160 160 -0.26

S2-22 | 260 18 17 -1.4 -1.5

S2-23 | 260 18 17 -1.4 -1.5

S2-24 | 260 18 17 -1.4 -1.5

Table 4 Taylor micoscale\() errors for Group 2 (in percent)

Case | Ihal lha Il lha lll lha IV Noba | Noba Il | Nob llI Rajpal Roman | Sree [ Tumm Maanen
S2-01 -1.7 -16 1.1 -9.1 5.1 -6.3

S2-02 -1.6 120 -16 1.1 -9.1 -6.3

S2-03 | -16 -16 1.1 -9.1 -6.3

S2-04 -1.8 -13 -11 -18 -28 -5.5

S2-05 -2.5 -13 -6.6 -74 -28 -5.5

S2-06 | -10 -28 11 -13 -6.6 -92 -28 -5.5

S2-07 0.63 8.6 3.1 -9.7 6.4 -4.3

S2-08 | -12 8.6 3.1 -9.7 -4.3

S2-09 | -54 8.6 3.1 -9.7 -4.3

S2-10 -2.0 27 -5.5 -18 -49 -5.3 -5.4
S2-11 | -14 27 -2.7 -49 -5.3

S2-12 | -47 -51 27 -2.7 -49 -5.3 -7.6
S2-13 0.47 -32 -29 -18 -3.9

S2-14 | ----- -14 -32 -26 -3.9

S2-15 | ---- -32 -27 -3.9

S2-16 -3.0 -1.1 -2.4 -4.6

S2-17 | - -1.1 -2.4 -4.6

S2-18 [ ----- -31 19 -1.1 -2.4 -4.6

S2-19 1.9 -52 -38 -4.6 -18 3.4

S2-20 [ ----- -52 -28 -4.6 3.4

S2-21 | - -52 -36 -4.6 3.4

S2-22 -5.0 20 6.5 -46 1.5

S2-23 | - 20 6.5 -46 15

S2-24 | ----- 20 6.5 -46 1.5




