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ABSTRACT

Two new estimators are introduced for correlation func-
tions between two or more channels of a laser Doppler
anemometer (LDA). The first estimator is based on a
slotting technique and the second on a sample-and-hold
reconstruction with a refinement of the correlation esti-
mate. In both cases the coincidence requirement between
channels 1s eliminated. The estimators are applicable to
two-component or three-component LDA, but is more in-
teresting for two-point or multi-point LDA, where coin-
cidence is practically non-existent or where the effective
separation distance goes to zero for overlapping volumes,
thus biasing the spatial correlation function at low sepa-
rations.

1. INTRODUCTION

Two or multi-channel laser Doppler anemometry (LDA)
is used when correlations between velocity fluctuations
are required. In a two velocity component LDA, the two
measurement volumes are at the same location in the flow
and the correlations between components represent com-
ponents of the Reynolds shear stress tensor. If a two-point
or multi-point LDA is considered, the correlations then
represent spatial correlations. Most commonly, these cor-
relations between velocity fluctuations are evaluated at
time lag zero (covariance or after normalization correla-
tion coeflicient), however in principle all time lags can
be considered, in which case the correlation function or
space-time correlation function between velocity fluctua-
tions can be obtained.

There are three basic deficiencies in present LDA sys-
tems which can be eliminated using the new estimators for
cross-correlations. The first concerns the need for coin-
cidence. Conventional estimators of the cross-correlation
function work directly from the definition

Rap(r) = %ZUA(“)UB(“ +7) (1)

whereby it is understood that the mean has been removed
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Figure 1: Two-point configuration leading to spatial bias
of the cross-correlation funtion.

from the input signals ua and up. Thus a product uaup
can only be contribute to the sum if velocity information
from the two channels come with a time lag of exactly
7. Practically an acceptance window in time (coincidence
window) is tolerated, however in many applications this
window must be chosen very narrow to avoid a loss of
correlation, hence a biased estimator. Physically, the re-
quired window width will be dictated by the time correla-
tion function itself, and must often be chosen empirically
and/or iteratively.

In any case, given a narrow coincidence window, the
data rate of coincident velocity pairs may become very
low, especially for spatially separated measurement vol-
umes, which will be the focus of this paper. Thus, the
duration of the measurement to achieve a statistically
satisfactory number of samples N may become intoler-
ably long. Accepting a lower value of N simply increases
the variance of the estimate.

A second deficiency concerns the coincidence window
implementation, which is available at the hardware level
only for 7 = 0. In this case only data pairs which occur si-
multaneous in time are actively acquired, minimizing the
amount of collected data. For other time lags (7 # 0) no
hardware coincidence is forseen. If the function RAB(T)
is to be evaluated at many 7 values, then all data must
be acquired from both channels and coincidence must be
implemented at the software level. In this case, again,
due to the generally lower ‘hit’ rate of coincidence, large
amounts of data must be acquired and recorded to yield
statistically secure estimates.



A final difficulty with present estimators has been
pointed out by Benedict and Gould [2] in their discus-
sion of two-point correlation estimates when the separa-
tion distance becomes very small. Such measurements
are necessary if direct measurements of dissipation are to
be attempted. Once the two LDA measurement volumes
begin to overlap any g-type correlation will become bi-
ased because coincidence will be triggered when a single
particle passes through the overlapping region, as illus-
trated in figure 1. However velocity data from the two
channels is not originating with the surmised spatial sep-
aration of Ay, but with an effective spatial separation of
zero. Thus the estimator using coincidence will lead to
a spatial bias in the near-field region. This bias is very
significant, since the number of such single particle, two
channel signals is much more frequent that two particle,
two channel coincident signals.

All of the above difficulties will be alleviated using the
new estimators. The next section describes briefly the
simulation techniques used to produce test signals. The
two new estimators for non-coincidence, cross-correlation
are introduced in section 3. The performance of the esti-
mators applied to two-point LDA is studied in section 4
and a discussion and conclusion are given in section 5.

2. SIGNAL SIMULATION

The results presented in this paper have been achieved
using simulated signals, which allow systematic variation
of influencing parameters and also evaluation of absolute
errors, i.e. estimator biases. The techniques for generat-
ing a time-dependent, three-dimensional velocity field of
given statistical characteristics have been introduced pre-
viously in [3]. Since in the present case a two-point LDA
system is being examined, a spatial dependence must be
added, with a given spatial correlation function. Details
of how this was achieved can be found in [5].

The two situations which were examined are shown pic-
torially in figure 2 and correspond to a f-type and g-type
correlation respectively. The main flow direction is along
the x-axis and the mean velocity in both the y and z
directions is zero. A cosine function was chosen to de-
scribe the spatial correlation with an integral length scale
(first zero crossing) of 57 um in the direction of the mea-
surement volume separation and 1m in the other two di-
rections, the latter case making its influence negligible.
The measurement volumes had dimensions of 40 ym (z)
x 40 pm (y) x 40 ym (z). Although unrealistic at 40 pum
, the length (z) has no particular consequence since there
is no z velocity component and thus, together with the
particle concentration, only the data rate is effected by
this dimension.

An uncorrelated noise component could be added to
the simulated velocity values. The simulation was then
repeated for various values of measurement volume sep-
aration, either in x or y, for an f or g type correlation
respectively. Two cases for each correlation type were in-
vestigated. The first case had a mean velocity of 10m/s
and a variance of 1m?/s?, in which case 100 repititions
of the simulations were used to enable the statistical cer-
tainty of the results to be established. The second case
had a mean velocity of only 1m/s, thus representing a
much higher turbulence level.
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Figure 2: Measurement volume positions for signal simu-
lation: a) f- type and b) g-type correlations.

The conditions of the four simulation cases are sum-
merized in table 1.

3. DESCRIPTION OF ESTIMATORS

3.1 Coincidence based Estimator

For comparison purposes a software implementation of
the conventional hardware coincidence was used to eval-
uate the coincidence based correlation given by

Nc
() (0) =
Ry p(0) = A ; ua(tan)us(tsn) (2)
where N. is the number of coincidence events and the
arrival times satisfy the relation

(3)

|tan — tBr| < 7.

The data rate of coincident events is denoted by n..
3.2 Slot Correlation Estimator

The slot correlation estimator is given by

Na Np

>0 > uaiupsbr(te; — tai)

i=1 =1
Na Np

>° 2 br(ts; — tai)

i=13=1

RGL(kAT) =

where the weighting function by is given by

bk(At):{(l)_%_H for|%—k|<1

otherwise



Correlation f- type g-type

Case 1 2 3 4
Mean Mauy 10 1 10 1
velocity My 0 0 0 0
[m/s] Moaw 0 0 0 0
Velocity o2 1 1 1 1
variance a2 0 0 0 0
[m?2/s?] o2, 0 0 0 0
Reynolds Cuw 0 0 0 0
stresses Cuw 0 0 0 0
[m?/s?] Cow 0 0 0 0
Integral Iy 40 400 40 400
time I — — — —
scale [ms] I - - - -
Integral Ly |57.3um | 57.3 um 1m 1m
length Ly 1m 1m 57.3um | 57.3 um
scale L 1m 1m 1m 1m
Record T 100 1000 100 1000
length [s]
MV 2a 40 40 40 40
dimensions 2b 40 40 40 40
[m] 2 40 40 40 40
Coincidence 7. 5 50 500 5000
time [us]
Lag time AT 10 100 10 100
interval [ms]
Particle ep [ 3x10° | 3x10° | 3x 10° | 3 x 10°
conc. [m~3]
Noise Level o3, 0.1 0.001 0.1 0.001
[m? /7]

Table 1: Summary of simulation parameters for data sets
1-4.

by (At)

Slot -2 Slot -1 Slot 0 Slot 1 Slot 2

1
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Figure 3: Ilustration of weighting function by (At).

and At = tp; — ta;. This weighting function is illus-
trated in figure 3 and represents a modification to con-
ventional slot correlation estimates. Physically the slots
are no longer sharply defined and this results in a lower
variance of the correlation estimate, since slot quantisa-
tion noise is reduced.

The data rate, or slot rate, is denoted by n.(kAT).

3.3 Reconstruction based Estimator

Details of the estimator based on signal reconstruction
can be found in [4]. A sample-and-hold (S+H) recon-
struction has been employed with a re- sampling at the
time intervals of A7. The S4+H can be represented by

uA(t)ZuA,‘ A4

tai <t <tai41
UB(t) = upBj A4 (6)

tpy <t <tmj+

and the resulting cross-correlation estimator by

= Doy wa(iAT)up((i + k)AT)
for k>0
N i ey ua(iAT)us((i — k) AT)
for k <0
(7)
where N, is the total number of resampled data points.
The low-pass filter associated with this reconstruction
and re-sampling (eg. [1]) is compensated for by recogniz-
ing that the filter F' can be inverted, i.e.

R} (kAT) =

R, =F'RY) (8)

to yield an improved estimate of the cross-correlation

(r)

function R'j,. This stage of the estimation has been
termed refinement and has been initially formulated for
autocorrelation function to improve frequency spectrum
estimation from LDA data [6].

4. RESULTS

4.1 f-type Correlation

The results for case 1 (low velocity bias) are summarized
in figure 4, showing the expectation and the data rates
for the f-type correlation. In figure 4a the three esti-
mates are compared to the theoretical spatial correlation
(cosine). Also the reconstruction estimate without refine-
ment has been added to this figure. The reconstruction
technique exhibits a very low systematic error, with or
without refinement. The refinement is not really neces-
sary since almost all particles producing a signal in the
first measurement volume also result in a signal in the
second measurement volume (low turbulence).

The slot correlation lies consistently below the recon-
struction estimate, due to multiple particle measurement
in the slots. This can be seen by examining the data rates,
as shown in figure 4b. The mean expected data rate at
zero time lag is estimated from the particle concentration,
the mean velocity and the projected measurement volume
to be approximately 38s~!. Whereas the coincident esti-
mator achieves about this value, the slot correlation lies
significantly above. Thus cross-correlation contributions
from different particles within a slot are being consid-
ered, which lowers the estimate marginally. Physically
this means a small influence of the time correlation func-
tion is entering into the spatial correlation estimate.

The coincidence estimate performs very well up to a
spatial separation corresponding to the overlapping of
the measurement volumes. Due to the short coincidence
time chosen (5 us), the data falls off abruptly beyond this
point. Only the fastest particles still fulfil the coincidence
requirement, thus strongly biasing the correlation esti-
mate.

The empirically determined variance of the reconstruc-
tion estimate was found to be the lowest (not shown).

Results for case 2 (high turbulence level) are shown
in figure 5, in which all estimators are seen to be biased.
This is an error associated with the classical velocity bias.
As in the previous case, the coincident estimator under-
goes a negative bias at larger separation, due to the selec-
tion of only fast particles through the coincidence window.
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Figure 4: Results for case 1: low turbulence, f-type cor-
relation.

The effect 1s not as abrupt in this case, only because the
turbulence level is higher and the effect becomes ‘smeared’
out.

Again the variance of the reconstruction estimator is
the lowest.

4.2 g-type Correlation

The results for the g-type correlation at low turbulence
are summarized in the three diagrams of figure 6. In
the diagram of the mean covariance (figure 6a), also the
reconstruction estimate without refinement is shown and
agrees well with results presented in [4].

The coincidence estimator exhibits a strong systematic
error for spatial separations in which the measurement
volumes still overlap. This corresponds to the problem
outlined in conjunction with figure 1. Since the effective
spatial separation remains effectively zero for overlapping
volumes, the mean covariance maintains a value close to
1. For non-overlapping volumes, this estimate follows the
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Figure 5: Mean covariance estimated for case 2: f-type
correlation at high turbulence.

reconstruction estimate, however the data rate decreases
dramatically, as seen in figure 6c. Consequently, the esti-
mator variance is also very high (figure 6b).

The reconstruction estimate is very close to the pre-
scribed correlation at small separations but lies below at
high separation values. This is related to the spatial aver-
aging over the finite size of the two measurement volumes,
an effect which is not present in the f-type correlation.
This effect can be evaluated as a spatial integral

Ay+2c
2 Y
054”];) = o, Ccos L—p(y) dy 9)
Ay—2c Y
where o2 cos 7= is the prescribed spatial correlation and
v

where the probability of the y value of the particle passage
is uniform across the volume

_ y—Ay|
1 | 2c

PY) = x50 (10)

=152 dy

Ay—2c

The value of 054”];) has been added to figure 6a and

describes the reconstruction estimator well at larger lag
times. At very small lag times single particle, two chan-
nel signals dominate and the true zero correlation is esti-
mated.

The slot correlation exhibits both the spatial averag-
ing mentioned above and the temporal averaging over the
slot width and lies therefore below the reconstruction es-
timate.

As in previous cases, the reconstruction also exhibits
the lowest variance, as seen in figure 6b.

Finally results for the g-type correlation at high turbu-
lence levels is shown in figure 7. Asin case 2, a systematic
error of the covariance is apparent for the reconstruction
and slot estimates. The lower variance of the reconstruc-
tion estimate is even more pronounced. The data rate
behavior is similar to that in case 3. (figure 6¢).
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Figure 6: Results for case 3: low turbulence, g-type cor-
relation.
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Figure 7: Results for case 4: high turbulence, g-type cor-
relation.

Practically, the lower variance exhibited by the slot cor-
relation and reconstruction estimate should allow shorter
measurement times to achieve a given uncertainty. This
has been more explicitly investigated by computing the
estimators’ variances as a function of particle concentra-
tion and also measurement time. The results are pre-
sented 1n figures 8a and b respectively, using the flow
parameters of case 3.

Included in these figures are results using 3 coincidence
window widths, between 1 ms and 10 ms. The 10 ms win-
dow corresponds to the slot width employed, however al-
ready leads to a reduced (biased) correlation. The 1ms
window is more realistic. For a given variance, the slot
correlation or reconstruction estimate leads to measure-
ment times of a factor 5 less than with the coincidence es-
timate. Similarly, the slot correlation and reconstruction
estimate achieve a given variance at much lower particle
concentrations, for a fixed measurement time. Indeed, at
very low particle concentrations the slot correlation out-
performs the reconstruction estimate. This lies presam-
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Figure 8: Estimators’ variance for case 3: low turbulence,
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ably in the fact that at vary low particle concentrations,
the particle rate n, required for the refinement step, is
poorly estimated. In either case however, the improve-
ment factor is much less than for the measurement time.

Note that figure 8a and b are both plotted in a double
logarithmic scale, indicating the power law behavior of
the variance as a function of particle concentration and
measurement time.

5. CONCLUSIONS

The present results indicate clearly the advantages of the
slot correlation and the reconstruction estimate over a
coincidence estimate for the cross- correlation of veloc-
ity data from a two-point LDA. For the user the main
advantage lies in a significantly shorter measurement du-
ration to achieve a given variance, typically a factor of
5 or larger. Furthermore the spatial bias for overlapping
measurement, volumes is completely avoided.

The reconstruction technique shows less systematic er-
ror than the slot correlation and furthermore has a lower
variance. On the other hand the slot correlation is signif-
icantly easier to implement, requires less computational
time and is also robust when the particle concentration
varies significantly. The main disadvantage of the slot
correlation is the inherent time averaging over each slot

width.
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