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ABSTRACT

A new spectral estimator for LDA data is introduced,
based on one-point reconstruction techniques, but em-
ploying a refinement which accounts in a statistical man-
ner for the velocity change between a particle arrival and
the sample instant. The technique successfully eliminates
the low-pass filter behavoir associated with reconstruction
techniques in general and is therefore particularly inter-
esting for the estimation of spectra at low data rates. The
new estimator is demonstrated using experimental data
and simulations. The evaluation is supplemented by com-
parisons with low-noise, hot-wire data.

1. INTRODUCTION

LDA data analysis, especially spectral estimation, has of-
ten been performed using a signal reconstruction, yielding
data with equal time spacing between measurements. The
statistical properties of such reconstructed data can differ
significantly from the those of the physical process being
measured. Among other effects, conventional reconstruc-
tion techniques introduce a finite correlation time to the
originally uncorrelated noise component of the velocity
time history, which is equivalent to a low-pass filter. This
effect has been well documented for specific reconstruc-
tion schemes and is easily observable in measured power
spectral densities (Adrian, Yao; 1987). In fact, this ap-
pears to be the dominating effect of reconstructed signals,
meaning that even among reconstruction schemes, it is
often difficult to give a general preference (Miiller et al.;
1994).

The present work examines the possibility of improving
autocorrelation and spectral estimates from reconstructed
signals, using knowledge about the particle arrival statis-
tics to correct the raw estimates. The techniques dis-
cussed here are applicable only for one-point interpola-
tion schemes, i.e. interpolation between LDA data points
irregularly spaced in time, which use only the last valid
data point for interpolation within that interval. This
would include the widely used sample and hold interpola-
tion (S+H) (Adrian, Yao; 1987) or the single exponential
interpolation (Hgst-Madsen; 1994). The technique is not
suitable for use with a linear interpolation or, for instance,

a fractal reconstruction, in which two or more data points
are used to interpolate missing intervals of the data set.

As in many previous suggestions for estimating power
spectra, the goal is to reduce the effect of noise in LDA
data sets as well as the variance of the estimates —
goals which are usually compatible with one another
[2,10,13,18]. Furthermore, interest lies in achieving these
goals also under the constraint of low data rates.

The refined reconstruction technique is introduced in
section 2 including details of the solution algorithms. A
brief description of the simulation procedure and experi-
ments used to test the technique is given in section 3. The
performance of the technique is then studied in section 4
with some conclusions and outlook for further work given
in section 5.

2. ESTIMATION PROCEDURE

The estimation of the power spectral density (PSD) func-
tion of turbulent velocity fluctuations can be broadly sub-
divided into non-parametric and parametric methods, as
illustrated in Fig. 1. The present technique is classified
as non-parametric and uses as a starting point, existing
methods of one-point signal reconstruction, re-sampling
and equal time sampled PSD estimators. This PSD esti-
mate is then refined on the basis of knowledge about the
mean time between velocity samples and the distribution
of the interarrival times. The approach is to derive an
expression for the resampled autocorrelation function in
terms of the true autocorrelation function, in a manner
very similar to that presented by Adrian and Yao (1987).
This relation is then inverted to estimate the true auto-
correlation function from the measured resampled auto-
correlation. The PSD estimate follows using a Fourier
transform.

2.1 Expression For Resampled Autocorrelation Function

The derivation begins by examining the time periods in-
volved in LDA data acquisition and resampling, as illus-
trated in Fig. 2 for the case of a sample and hold recon-
struction. There are basically three superimposed pro-
cesses: 1) the arrival of validated LDA data at the times,
trp A 2) the resolution of time measurement in the ac-
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Figure 1: Overview of estimation techniques for power
spectral density from LDA Data

Table 1: Possible reconstruction functions. pmoeder 18 the
autocorrelation coefficient of the model process.

Reconstruction technique frec(&5 — i)

Sample and hold (S+H) 1

Autoregressive 1st order (AR1)
(Exponential)

Model based reconstruction

Ei—t;
1

Pmodel (5] - tz)

quisition system, ¢;; 3) and the resample times £;. The
resample times are necessarily coincident with the time
resolution steps and for present purposes these steps are
assumed to be unity (£; = j). Furthermore, this primary
time resolution is assumed to be so high, that the time
difference t1,pa;; —t; is negligible in terms of flow dynam-
ics, i.e. trpayi = t; and urpa;; = u(t;). In principle this
time resolution will limit the spectral resolution at the
high frequency end, however other factors prohibit this
limit from being reached, as shown below.

Quite generally the reconstructed velocity signal can be
expressed for one-point reconstruction techniques as:

Urec(gj) = ULDA;ifrec(€] - tz) (1)

where t; —1 <{trpa; <t <& <tiz1—1<trpaji+1 <
ti+1. The function f;.. depends on the selected recon-
struction method, several possibilities are summarized in
Table 1.

The autocorrelation of the reconstructed velocity signal
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Figure 2: Principle relationship between arrival times and
resample times

is given by
Rrec(Tl ; T2) = E{Urec(Tl)Urec(T2)} (2)

Assuming stationarity this definition becomes time inde-
pendent and can be written as

Rree(7) = E{ttrec(§5)trec(&5 +7)} (3)
which can be estimated from a finite data set as

Ryce(7) = % Z tUrec(&5)Urec(€5 + 7) (4)

where 7 is simply the number of primary time steps be-
tween resample instances. Before proceeding to evaluate
this expression, it is now necessary to examine the statis-
tics of the time periods &; — ¢;.

The statistics of particle arrivals have been thoroughly
studied [4,5] in the past. For a random spatial distribu-
tion of the seed particles, the time between particle ar-
rivals is exponentially distributed with an exponent equal
to the instantaneous particle rate

A(t) = e (@) (5)

where ¢ is the volume concentration and A(%) is the de-
tection area of the measurement volume projected normal
to the velocity vector .
The probability of no particle arrival in the time interval
[ti;&5) is therefore
£5 .
pln=0;t;;¢) =0

e 6=t (6)

The second expression assumes time invariance of n over
short intervals. Conversely the probability of receiving at
least one particle arrival in the same interval becomes

pln > T3t ¢) = 1—e "6~ (7)

To now derive an expression for the autocorrelation
function of the reconstructed velocity signal in terms of
the true autocorrelation function, it is neccessary to ex-
amine the velocity values at two times 71 and 72 and their
probability of occurence. Two different situations must be
examined.



1. one measurement value at ¢1,pa;1 such that ¢, —1 <
trpa;1 < t1 < 7 no further measurement value be-
tween t; and 71 and one further measurement value
such that 1 < t2 — 1 < trpape < t2 < 7 and no
further value in the intervall [¢2;72). In this case

Urec(Tl) = ULDA;lfrec(Tl - tl)

Urec(T2) = ULDA;2frec(T2 - t2)

(®)
with an occurence probability denoted by p;.

2. one measurement value at t7,pa;1 such that t; — 1 <
trpa;1 < t1 < 7 and no further measurement value
in the interval [¢1;72). In this case

Urec(Tl) = ULDA;lfrec(Tl - tl)

Urec(T2) = ULDA;lfrec(T2 - tl)

(9)
with an occurence probability denoted by pa.

The probabilities of these two situations are respec-
tively
L= (1 . 6—h)26—h(r1+‘rz—t1—t2) — P1(7'1§ P HIE t2)

(10)

—n(r2—t1)

P2 :(l—e_h)e = po(m1; 723 t1)

The autocorrelation function given by Eq. (2) can now
be written

Rrec(Tﬁ T2) =

71 T2

Z Z E{u(tr) frec(ms — t1)u(t2) frec(m2 — t2)} p1

ti=—oco ta=71+1

+ i: E{U(tl)frec(Tl - tl)U(tl)fr66(72 - tl)}p2 (11)

tj=—o00

These equations can be simplified somewhat by setting
71 = 0, which assumes an arbitrary reference time of a
stationary process.

pL=pi(7it1,t2) = p1(0; T 1, £2)
(1 _ 6—h)26—h(r—t1—t2)

P =pa(Tit1) = p2 (0573 t1)
— (1 _ 6—h)6—h(r—t1)

(12)

A final expression for the autocorrelation function of
the reconstructed velocity signals can now be written

9

E{U(tl)frec(_tl)u(t2)frec(7 - t2)}P/1

E{U(tl)frec(_tl)u(tl)frec(T - tl)}p;

r

t1j=—o0 ta=1

Ruu(t2 - tl)frec(_tl)frec(T - t2)Pl1

+ Z Ruu(o)frec(_tl)frec(T_tl)p; (13)

tj=—o00

which is in fact now expressed in terms of the true auto-
correlation function Ry (7).

This expression has been verified using simulation tech-
niques described briefly in the next section. A velocity
time series with known spectrum (autocorrelation func-
tion) was generated and used to simulate LDA particle
arrivals at a mean data rate of 0.316 and for 10000 time
units. Fig. 3 compares the input spectrum with the spec-
trum deduced from Eq. (13) (after applying a Fourier
transform) and with the estimated spectrum directly from
Eq. (4) over the finite sample size for a sample and hold
reconstruction. Clearly Eq. (13) describes the autocorre-
lation function of the reconstructed signal well. Fig. 3b
illustrates similar performance using an AR1 reconstruc-
tion.

2.2 Refinement Of The Estimate

Using the transformation § = t; — ¢, Eq. (13) can be
written as

Rrec(T) =

Ruu(0) Y free(—t1) frec(m — t1)ph(Tit1)

oo min(7;€)
+ Z Ruu(g) Z frec(€ - t2)frec(7' - t2) .
é=1 to=1

pr(Tite — &b2) (14)

which is a linear system of equations

Rrec(T) = ,S’Ruu(T) (15)
By inverting the matrix §, a corrected or refined estimate
of R,.. can be obtaind

R:ec(T) = ,S’_lRTEC(T) (16)
which is now a non-biased and consistent estimator of
Ruu(7). This is illustrated in Fig. 4 for the previous exam-

ple, in which the PSD deduced from R,’fec(r) is compared
with the input spectrum (an AR2 process: ¢; = 1.5,
¢2 = —0.75). The improvement in the spectral estimate
is dramatic, at least at the lower frequencies.

3. SIMULATION TECHNIQUES AND DESCRIPTION
OF THE EXPERIMENT

Both simulations and experiments have been used to in-
vestigate the performance of the refined PSD estimate, as
illustrated in Fig. 5.

The simulations were based on signal generation as de-
scribed by Fuchs et al. (1994). Typically a 1st or 2nd
order autoregressive process i1s used to generate a time
series, after which particle arrivals are simulated using a
refined conveyer-belt model. Thus, all statistics of the
underlying process are known, including the PSD, how-
ever the data is available as would be measured by an
LDA, albeit without noise. The reliability of these simu-
lations has been thoroughly investigated previously [6,7].
These simulations are used to investigate the performance
of the estimators as a function of all system parameters,
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Table 2: Flow specifications

z/D xz/D Re I/(ms) Tu/(%)
6 3 40 000 2 24
Re - based on jet outlet diameter and velocity

Table 3: LDA specifications
Optics
Power 10mW
Wavelength 632.8 nm
Mode forward scatter
MV diameter 70 um
MYV length 470 um
Shift 5MHz
Processor
Model Counter TSI 1980
Min. Fringes 16
Mode Total Burst

including data density (particles/integral time scale), tur-
bulence level, etc. The simulation can be extended by
adding white noise to the individual velocity samples, de-
signed to mimic various noise sources present in the LDA
system (van Maanen, Tulleken; 1994).

Alternatively, the simulation can use an analog signal
sampled at a high rate as an input series. In the present
case a hot-wire signal was sampled at 20000 H z for this
purpose. The statistics of this signal can still be known
within the certainty of the noise in the analog signal.

LDA and hot-wire measurements were performed in an
axisymmetric free jet. The integral time scale (I) and
turbulence level (Tw) could be selected according to the
measurement position as summarized in Table 2. The
data density of LDA measurements (ND number of data
samples per integral time scale) was varied either through
the seed rate or through signal amplification.

A counter processor (TSI 1980) interfaced (DOSTEK
1400A) to a PC computer was used to process the LDA
signals. Specifications of the LDA system are summa-
rized in Table 3. The particle seeding was turned off
while HWA measurements were performed at the same
measurement position and flow conditions. A DANTEC
55M01 anemometer with a 55P01 single wire probe was
used. The signal was filtered at 10 kH z and sampled at
20kHz. The HWA signal was used to determine the in-
tegral time scale of the flow fluctuations and also as a
reference PSD function.

4. EVALUATION OF THE ESTIMATOR

In the following evaluation only the S+H reconstruc-
tion will be examined, since preliminary investigations
revealed little difference in comparison to other one-point
reconstruction techniques.

The first set of results are presented in Fig. 6 in which
the LDA spectral estimate with and without refinement
is compared to the HWA spectra for four cases. These
cases correspond to the conditions a) high data density
(Np = 14); b) high data density but also high noise level
(Np = 16); ¢) and d) low data density (Np = 0.63), short

and long data sets respectively.

Examining, first the spectral estimate at a high data
density (Fig. 6a), it is apparent that the S+H reconstruc-
tion estimate is not capable of resolving the second slope
in the spectrum indicated by the HWA data. The sec-
ond slope in the spectrum is associated with dissipative
scales of turbulence. The first slope is termed the inertial
subrange. The refinement does not improve the estimate
noticeably. The S+H estimate appears smoother at high
frequencies than the refined estimate. The S+H yields a
systematic error which in this case dominates the random
error (noise) in the LDA data set. The refined estimate
in fact recovers a portion of this random error, which ap-
pears to lead to a larger variance of the estimate, but is
probably more realistic of the true spectral content.

The increased noise level of case 2 (Fig. 6b) is apparent
both in the raw and the refined spectral estimate, whereby
the refined estimate shows a marginal advantage in the
range 200 Hz < f < 500 Hz.

The refined estimate shows a distinct advantage, espe-
cially at the low data rate of 314 Hz (Fig. 6¢ and d). The
S+H estimate exhibits a low-pass filter behaviour with a
cutoff frequency of 314/2# a2 50 Hz, whereas the refined
estimate appears reliable up to about 1000 Hz (Fig. 6d).

Comparing Figs. 6¢c and d allows the influence of the
record length to be evaluated, specifically the estima-
tor variance, which will decrease with increasing record
length. The estimation in Fig. 6¢ extends reliably only to
about 500 Hz, whereas in Fig. 6d this limit is increased
by factor of 2. Correspondingly, the noise level at high
frequency also decreases.

The interpretation of the spectrum in Fig. 6d is hin-
dered somewhat because the actual noise level existing in
the LDA signal is not known beforehand. To circumvent
this difficulty the HWA signal, which clearly has a much
lower noise level, was used as the primary input signal
for an LDA signal simulation. A high (Np = 14) and
low (Np = 0.63) data density was simulated with the
respective spectra estimates shown in Fig. 7.

Fig. 7a shows clearly that the refined estimate is very
successful in capturing even a portion of the dissipation
range of the spectra whereas the raw estimate is filter
dominated above 1kHz. The approximate agreement
with the true spectrum is only fortuitous in the case of
the raw estimate, a situation which has often been mis-
interpreted in the past. These results indicate that the
noise level in Fig. 6a was indeed preventing resolution of
the refined spectral estimator.

The same simulation procedure at the low data rate
(Fig. 7b) results in estimates in astounding agreement
with the original LDA data (Fig. 6c). This is because
a rather short data record has been used, in which case
the estimator variance is again dominating the estimate
at high frequencies.

5. CONCLUSIONS

A new spectral estimator has been introduced which
builds on conventional one-point reconstruction estima-
tors and refines these using knowledge about the particle
arrival statistics. The above results on a selected number
of data sets appear to be at most a modest improvement
of LDA spectral estimation. On the other hand a very
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basic feature of reconstruction techniques in general has
been overcome, namely the low-pass filter associated with
the mean particle rate. It is therefore not surprising that
the merits of this new approach become especially appar-
ent at low data rates.

Nevertheless, the presence of noise in the data set will
ultimately determine the resolution of the estimator at
high frequencies and the remarks concerning the mini-
mizing of these noise sources given in van Maanen and
Tulleken (1994) can only be reiterated. In the case of
very low noise levels however, all other reconstruction
techniques, including the Kalman filter will suffer from
filter dominated estimates at low data rates. This is the
major advantage of the new, refined estimator.
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