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Abstract

The reconstruction of an LDA signal refers to the in-
terpolation of the measured velocity values obtained at
random times, resulting in a velocity signal continuous
in time. In particular, this paper deals with the bias
and variance of several moment and spectral estima-
tors based on reconstructed LDA signals. In addition
to conventional reconstruction techniques, two more re-
cent methods are investigated, including projection onto
convez sets and fractal reconstruction. Both simulations
and experiments have been used to evaluate the suitabil-
ity of the various reconstruction techniques as a function
of the flow and seeding parameters.

1 Introduction

Flow velocity information is obtained with an LDA at ir-
regular time intervals, corresponding to random particle
arrivals in the control volume. Whereas the information
content of data obtained by equidistant sampling of a
continuous process is well defined by Shannon theorem
[16], there currently exists no equivalent statement for
randomly sampled signals. Furthermore, the probabil-
ity density function of the sample intervals is dependent
on the instantaneous velocity magnitude. These prop-
erties of LDA signals must be considered in formulat-
ing moment and spectral estimators to avoid bias errors

[2, 5, 7].

Considerable attention has been directed to extract-
ing moment and spectral information from LDA signals,
usually with the intuitively acceptable conclusion that a
higher mean particle rate will lead to better estimates.
Parameter estimation customarily takes one of two ap-
proaches. Either estimates are based directly on the
available velocity samples, their arrival times and possi-
bly further information such as residence time; or an in-
terpolation of the velocity signal between the measured
values is performed, followed by an estimation based
on the reconstructed signal, often using an equidistant
sampling of the reconstructed signal.

One may ask why such a myriad of data processing
approaches exist and what the motivation for pursuing
novel approaches can be. Three interesting situations
can be cited for which improvements can be envisioned.

1. At present, direct spectral estimation of LDA sig-
nals is basically a trade-off between bandwidth
and variability[10]. At higher frequencies, spec-
tral estimates become less certain. This behaviour
is well documented and is not likely to change in
principle even with improved estimators [15, 17,
20]. However, the estimator variability may de-
crease for some estimators, especially if physically
plausible information regarding the spectrum of
turbulent fluctuations can be entered into the es-
timation @ priori. A reconstruction model may
be capable of achieving this and thus extend the
bandwidth or improve the variability of the esti-
mate.

2. There exist several frequently encountered mea-
surement situations in which the seeding density
is not homogeneous and may be correlated with
the measured velocity. Mixing layers originating
from two different flow sources, or combustion sys-
tems in which the detection of the seeding particles
is influenced by the combustion are examples. In
such situations unbiased moment or spectral esti-
mators are difficult to formulate and here again, a
reconstruction of the signal may offer an accept-
able alternative [21].

3. The third situation concerns spectral estimation
of short time records, necessary when analysing
transient flows. One such example is length scale
estimation in an internal combustion engine. The
validity of Taylor’s hypothesis put aside, rough
length scale estimates are often only available through
a spectral analysis of single point velocity mea-
surements in an engine. Clearly, length scales vary
dramatically throughout the cycle so that an es-
timation must be made on relatively short time
records. Conventional spectral methods are un-
suited to this task, as is well documented by the in-
creasing number of methods developed for speech
processing {11].
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Figure 1: Schematic representation of how experimental data was used to verify results of the simulation program.

The present paper does not attempt to derive a the-
oretical statement about what information is actually
contained in LDA data. Rather it uses an empirical ap-
proach to compare various suggestions whic}} have been
put forward in the literature, and to investigate under
what conditions these estimation schemes perform well.
But even with this more modest approach, it is essential
that the evaluation of the result is accurate enough to
recognize possible differences or improvements between
estimators. This has been achieved by a combination of
simulation and experiment as summarized in Fig. 1 and
described briefly below.

The study of reconstructed LDA signals builds on pre-
vious work involving the simulation of LDA data of given
statistical properties using a trivariant autoregressive
process [8, 9. The simulated LDA data can then be
processed and compared with the known signal proper-
ties. In the present study this approach has been refined
by also obtaining data from a flowfield. Both LDA 'and
hot-wire data (HWA) were taken from various positions

in a flow. Direct comparisons could be obtained be-
tween an analysis of the LDA data and the continuous
HWA data. Furthermore, the HWA data could be used
both directly and indirectly to simulated the LDA data
and to obtain a further reasssurance that the simulation
results were realistic. Finally, purely simulated results
provided the flexibility to investigate situations in which
an equivalent experiment would be difficult to perform.

2 Description of Reconstuction

Models

This section is purposely kept concise because the mod-
els used are taken from the literature and described else-
where in detail [14].

2.1 Polynomial Interpolation

A zero order and first order polynomial have been used
for interpolation. The zero order interpolation corre-
sponds to the well-documented sample and hold (S+H)
or arrival time weighted estimator[1, 6, 23). The first
order interpolation will be referred to as a linear inter-
polation.

2.2 ‘Shannon’ Reconstruction (SR)

First introduced by Clark et al.[4] and applied to LDA
data by Veynante and Candel{21], this approach stretches
the time axis such that the velocity samples lie at equally
spaced time intervals. Shannon reconstruction[16] can

then be applied to interpolate intermediate points. Af-

ter the stretched-signal reconstruction, the inverse of the

stretching transformation can be used to resample the

signal at the times corresponding to equal intervals prior

to the stretching. This approach will be strictly valid

only for the case that the time-streiched signal is band-

limited to half the sampling frequency.

2.3 Fractal Reconstruction (FR)

It is important to note that the fractal reconstruction
discussed in [18, 19] uses equally spaced samples. In [3]
and this study, a time-stretching transformation similar
to that used for the Shannon reconstruction has there-
fore been used prior to the fractal reconstruction. Note
that the fractal reconstruction can be implemented in
different ways. Strahle used target points (mid-points)
to close the system of mapping equations. In the present
study with non-equally spaced data, this method was
very unstable and very sensitive to the smallest variation
of velocity value, a property not desirable in light of the
noise expected to accompany LDA measurements. Re-
sults presented by Chao and Leu[3] using target points
appear promising, however it is not clear that their data
set reflected the true particle arrival statistics of LDA,



since they first artificially reduced the data rate, pos-
sibly preferentially, although unintentionally. Therefore
in the present study, the fractal reconstruction was im-
plemented using a fixed d, coefficient in the defining
relation

Tnew _ a, O ) ( Told >+< €n )
( hnew - Cn d, hold fn
where 7 is the abscissa of the time-stretched coordinate
system and h is the transformed velocity. The other
transform coefficients were determined by demanding
collocation on every interpolation interval. An obvious
weak point of this reconstruction method for LDA data
is that the essence of the technique, namely the simi-

larity in scales, is not preserved after the reverse time
transformation.

2.4 Projection onto Convex Sets (POCS)

Interpolation through POCS has been applied in a vari-
ety of fields in which a finite bandwidth B of the under-
lying process exists and is known. A function g(t) which,
through digital filtering (rectangular) satisfies this cri-
teria, i.e. G(w) = 0 for w > 2B, is then interatively
matched to the measured velocities u(t;) using the iter-
ation algorithm '

(E+1) () — () /\iu(ti)—— ur(t:) i
grrI() = g™ (1) + T (t:)

where ); is a relaxation factor,|| || is the Lo-norm and
u(t;) = h(t;)g(t). Again there are several approaches
to implementation, all of which are very computation-
ally intensive. Principally however, the spectrum of
the interpolation is band-limited according to the fil-
ter applied to g(t). In the present study g°(t) was a
low-pass filtered linear interplation of the LDA data, re-
pressented by discrete values at interals of 1/2B. The
one-dimensional vector k(t;) is defined for this imple-
mentation of g(t) as:

[si(27B(r1 — t:)), ..., si(2wB(tm — t;))]

where 7; are equidistant sampled points of g(t). Note
that this method is not necessarily collocative, depend-
ing on the termination criteria of the interation.

Previously, this method has only been applied by Lee
and Sung{12] to LDA data, with apparent success, ex-
tending the cut-off limits of the spectrum by 5-6 times
over S+H. Unfortunately, they do not provide informa-

tion on their choice of B and in fact, their good agree--

ment with the target spectrum may well be fortuitous,
the true deviation being compensated by aliasing. More
details are required of their implementation technique
to be conclusive.

2.5 Direct Spectral Estimation

For comparison purposes a direct spectral estimation
has also been performed. This estimator is similar to
that proposed by Roberts et al.[15] with an additional
weighting of the individual velocity values w(t;), in this
case with the residence time:

S(f)=T “E u(t.')w(t.')d(t.-)c—h:h.' |2 _ 2 uz(tg)wz(t‘.‘)dz(t,-)}

[ w)]?

where d(t;) is a window function. In [13] this estimator
was shown to be superior to an estimator without res-
idence time weighting, in terms of turbulence-induced
velocity bias.

3 Description of Simulation and
Experimental Data Sets

3.1 Test Signals

Two test signals were used to illustrate the reconstruc-
tion schemes in time domain, as shown in Fig 2. The
first is an exponentially modulated cosinus of the form

n(t) = e T cos (wt/1s)

The second is a simulated (1D) flow field with a mean
of zero, a variance of 1 m?/s? and an integral time scale
of 1s. The particle density was chosen to yield 2 mean
particle rate of 1 particle per integral time scale.

3.2 Simulation Data Sets

In addition to the two test signals previously mentioned,
several other simulated data sets were investigated, all
with a mean velocity of 10 m/s, an integral time scale
of 0.1s, a first order autoregressive spectral distribution
and a primary generation of 100 samples per time scale.
The turbulence intensity was varied between 10% and
100% using both 1D and 3D flowfield simulations. All
simulated data sets extended over 10,000 integral time
scales. The particle number depended on the seeding
density, which was varied to yield an average date den-
sity (particles per integral time scale) of & = 10, 1 or 0.1.
Residence times were generated for each particle passage
using measurement volume dimensions of 20um x 20pm
x 100um. Upon reconstruction, further processing con-
tinued only after a resampling at equidistant intervals
of 0.01s. Full details of the simulation technique can be
found in previous publications [8, 9].
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Figure 2: Reconstructed test signals using S+H, SR, FR and POCS interpolation: _ _ _ test signal; « LDA

reconstruction

sample points;



3.3 Experimental Data Sets

Flow velocity measurements were performed behind a
wall-mounted obstacle, allowing variation of the turbu-
lence intensity. Hot-wire measurements and LDA mea-
surements were performed at identical positions, the for-
mer without seeding. Only the measurement point 1 will
be used in this study, the statistics of which are summa-
rized in Table 1. As indicated in Fig.1, the HWA data
was used also for indirect simulation studies, whereby
the statistical values shown in Table 1 were used as a
basis.

The primary purpose of including an experiment in
this investigation was to verify the simulation proce-
dure. This is illustrated in Fig. 3. In this figure the
spectrum measured using the LDA, employing Shannon
reconstruction is compared to the spectrum obtained di-
rectly from the hot-wire signal and with the simulated
LDA signal using the hot-wire signal as a primary series
in the simulation. This comparison shows that the sim-
ulation procedure yields a spectrum very similar to that
which was actually measured with LDA, indicating that
the numerical seeding procedure is trustworthy. Fur-
ther reference to the hot-wire and LDA measurements
will not be made.

AWA LDA
dufs] | Tm/s] | oh[m?/s%] | Dol | To[%] | N[Hz]
0.003 | 8.156 | 014l | 1.67 | 46 | 212

Table 1: Statistics of measurement point 1
4 Results and Discussion

Already the interpolations viewed in time domain (Fig. 2)
indicate that the success of any scheme will depend
largely on the input signal. The band-limited tgst signa.xl
- yna(t) is excellently approximated by POCS, since this
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Figure 3: Verification of simulation procedure’ using
HWA signal as primary series. A Shannon reconstruc-
tion was used for spectral estimation.

is a prerequisite for such an interpolation. Further eval-
uation of the reconstruction schemes however, can only
be on the basis of more precise statistical measures. For
this purpose the normalized error of the first two mo-
ments, using arithmetic averaging of the reconstructed
signal, has been computed and presented in Fig. 4 for the
S+H, linear and the SR reconstruction schemes. Also
shown is the percent error expected for a free-running
processor[7]. Note that the abscissa is now the data
density, i.e. the data rate(N ) times by the integral time
scale(dy).

As expected, the normalized errors decrease with in-
creasing data density. The first moment error of all es-
timators follows very closely the S+H error, which has
also been theoretically derived and is shown in Fig. 4[23].
From these measures alone, no scheme can be strongly
favoured over the other. Examining the normalized vari-
ance error indicates that the linear interpolation ex-
hibits significantly lower variance estimates. The SR
estimates lie between the linear and S+H values.

Spectral estimates based on a resampling of the re-
constructed signal are shown in Fig. 5 for two data den-
sities, a = 10 and 0.1, corresponding to data rates of
100 ad 1 Hz respectively. They are compared to the ex-
pected spectrum, computed directly from the primary
simulation series. All interpolation based estimators are
expected to exhibit a low-pass filter characteristic, the
cut-off frequency being related to the data density. This
calls for great caution in appraising estimators, since
typical turbulent spectra, and also the simulation mod-
els, resemble closely first order filters. For the S+ H re-
construction, Adrian and Yao[l] have given the cut-off
frequency as the data rate divided by 2x. This corre-
sponds to 16 and 0.16 Hz for the two simulations respec-
tively.

From Fig. 5 it is clear that the linear reconstruction
and the Shannon reconstruction behaves more like a sec-
ond order filter, falling off more rapidly than the S+H
reconstruction. This also explains the lower variance
observed in Fig. 4 for the linear reconstruction. The
high variability of the direct estimation at high frequen-
cies, as derived by Gastor and Roberts{10], is confirmed
in Fig. 5. At low data densities all estimators resem-
ble the S+H result, showing an increase of power at
low frequencies, attributed to step noise in {1], and a
decrease at higher frequencies due to the filter effect.
In fact, the residence time weighted direct spectrum
appears to be overall the most efective estimator from
these data. Again it must be emphasized that the fact
that'the S4+H, Linear and SR spectra fall off at higher
frequencies have less to do with the fact that they esti-
mate the flow fluctuations well, rather this is the particle
rate filter effect. If the filter effect were computationally
removed, these spectra would resemble the flatness of

-the direct estimate, but with significantly larger bias.
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Figure 5: Spectral estimates from a 1D flow simulation with 30% turbulence and two data densities.

The estimate based on the Shannon reconstruction
typically lies between the S+H and the linear recon-
struction. In [21] this reconstruction scheme appeared
to be superior to others, a behaviour which is surely

attributable to the bandwidth limitation of the three
sinusoids used as a test signal. In a second presenta-
tion of spectral estimates from Shannon reconstruction,
no direct comparison to other techniques were explic-
itly given[22]. Note that one assumption in applying
this technique is the bandwidth limitation of the time-
stretched signal, a feature which by no means has been
demonstrated for typical LDA signals. Originally this
technique was applied only to regularily sampled signals
with some jitter on the sample times, a considerably dif-
ferent situation to LDA data[4].

The difficulty in applying fractal reconstruction to .

LDA data is illustrated well in Fig. 6a, showing the de-
pendence of the mean and variance bias on the choice of
d,. Although a value of 0.17 appears to be quite effec-
tive in minimizing bias errors of the variance, this is not

known beforehand and furthermore the optimal value
will also depend on turbulence level and data density.
The mean bias does not reach zero even for a d,, value
of 0.4.

Using the fixed value d, = 0.17, the spectra for a =
10 and 0.1 using the fractal reconstruction are shown in
Fig. 6b. At high data densities the fractal reconstruction
lies between the S+H and SR in the upper frequency
range. At low data densities the FR estimate agrees
well with the linear and SR estimates, i.e. it exhibits
a stronger filter effect than the S+H estimate.

These results do not support the optimism of [3] in
applying FR to LDA data. Possible refinements to im-
prove the FR spectral estimation are: application of FR.
without the time-stretching transformation; estimation
of the fractal dimension (D,) from randomly sampled

points and; formulation of some relation between D,
and d,,.
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Finally the results of applying the POCS interpo-
lation are presented in Fig. 7. In Fig. 7a the effect
of data density at a bandwidth of B=1/2c is demon-
strated. Here the filter influence is much more severe
than with other interpolation schemes, exhibiting in ad-
dition an oscillation corresponding to the applied box-
car filter (Gibb’s phenomenon). If B is increased be-
yond a/2, the spectrum estimate can closely approach
the expected spectrum, as shown in Fig. 7b for a=10,
however the correct choice of B is not known before-
hand. Furthermore, if B is increased still further, the
POCS spectrum will asymptotically approach the Lin-
ear estimate, because the linear interpolation was used
as a start value for g(t). These results indicate that the
POCS estimation is not a promising alternative in the
present implementation, at least without some scheme
for choosing B.

5 Final Remarks

The possibility of improving parameter estimation for
LDA data through the use of signal reconstruction tech-
niques has been investigated. Several reconstruction
techniques have been considered, some of which have
been reported on previously in the literature, usually to-
gether with promising results. The results of the present
study however, have shown that of those techniques con-
sidered, none can unconditionally be considered superior
to a residence time weighted direct estimation.

The implementation of the time-stretching transfor-
mation in the fractal reconstruction is unsatifactory, since
the similarity of scales is not preserved. A refinement
in this regard could bring improvements, although some
doubt exists whether previously reported performance
can be achieved with actual LDA data.

While the present results cannot clearly recommend a
signal reconstruction as an alternative to the direct esti-
mation, other conclusions may be obtained for the case
of non-homogeneously seeded flows, as was examined in
[21]. This will be the topic of future work.
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