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ABSTRACT

The correlation between the measured velocity component and the in-
stantaneous particle rate in laser anemometry leads to a statistical bias
of most commonly used estimators. An additional bias may occur in non-
homogeneously seeded flows if a correlation exists between the velocity
and the particle density. These statistical bias effects are investigated
using numerical simulations. Models for the particie arrival statistics
are derived using autoregressive (AR ) time series of the first order, gen-
erated for three velocity components with prescribed means, Reynolds
stress tensor and time scales of the three normal stress tensor terms. The
expected results obtained with commonly used processors and sampling
techniques are investigated for various prescribed homogenous and in-
homogeneous particle densities. The numerical results are compared to
existing theoretical solutions and to some initial experimental results.
obtained in an axisymmetric, co-flowing free jet. Some comparisons

between one-dimensional and three-dimensional flowfields are also pre-.

sented.

INTRODUCTION

The use of the laser Doppler anemometer (LDA) to measure flow ve-
locities depends on the existence of small scattering particles in the
flow which exhibit negligible slip velocity. Conventional application of
the LDA technique assumes that the particle density is homogeneous
throughout the flow and for these conditions numerous estimators for
the statistical moments and the power spectrum of the fiow velocity have
been derived and analysed. including residence time weighting (Buch-
have et al. 1979), sample and hold processors (Edwards and Jensen 1983,
Adrian and Yao 1987) and controlled processors (Erdmann and Tropea
1984). The need for special estimators arises because the underlying
process exhibits, in general, a non-zero correlation between the sample
rate and the measured quantity. This particle rate - velocity correlation
leads to the well documented velocity bias if simple arithmetic averaging
is used as an estimator.

The correct choice of estimator may depend on numerous parameters,
the most important being the statistics of the flowfield, the particle
concentration and the functioning of the sampling and processing soft-
ware and hardware {Edwards 1987). Two recent studies (Winter et al.
1991a, 1991b) have been particularly successful in identifying the most
important time scale ratios and their influence on the error of controlled
processors and sample-and-hold processors. These studies will also be
used for comparison in the present work.

One major problem in the study of LDA estimators is that an experimen-
tal error evaluation is always difficult without a reference measurement
of known accuracy. Thus, numerical simulations have often been used
to verify or extend theoretical analysis. This paper also introduces a
numerical simulation of a three-dimensional flowfield with seeding par-
ticles and a sclectable processing and acquisition system. The simulation
is based on concepts first introduced by Tropca (1987) in which auto-
regressive {unctions are used to generate primary velocity time series of

known statistical properties. In a ‘conveyor-beit” fzsiion. particles are
then distributed in space and moved through the controi volume accord-
ing to the instantaneous velocity. Buchhave ef al. :1880) aiso used this
approach and extended it to three-dimensional fiowieids. The present
simulation improves the modelling presented by Buchhave i1990) and
extends it to also include residence time modelling.

Non-homogeneous particle densities may also infizence the correlation
between velocity and particie rate and thus be an inuencing factor on
the accuracy of the chosen estimator. The simplest example is the free
jet. in which the seeded jet air issues into non-seeded ambient air (Birch
and Dodson 1988). Other sources of non-homogeneous particle densi-
ties include combustion, temperature variation or pressure variations,
as pointed out by Asalor and Whitelaw (1975). Aithough this potential
source of error has been recognized by numeruous authors {Dibble et al.
1987, Durox and Baritaud 1957, Weckmann et al. 1936} iittle theoretical
treatment has been attempted and empirical estimates of the measure-
ment error are only very approximate. One exception is the circular
jet investigated by Lehmann (1989), in which conditional seeding of the
inner flow and of the entrained flow was used.

Therefore the numerical simulation was also designed to accept arbi-
trarv correlations between the measured velocity component and the
instantaneous particle density. Experiments in a co-fiowing jet have
been performed in which the seeding density of the outer and inner jet
could be carefully controlled. The strategy is to veriiy the simulation
model for selected conditions and then use the mocel to study further,
arbitrary conditions.

The following section introduces the simulation model and program.
The model is verified by comparison to various theoretical and known
experimental results in section 3. A description of the experiments and
a comparison between experimental results and numerical simulations is
given in section 4. Section 3 presents a brief summary of the conclusions.

FLOW SIMULATION MODEL AND DATA PROCESS-
ING

The simulation of LDA data from a 3D turbulent fowfield with known
statistical properties is performed in a number of independent steps as
represented diagrammatically in Fig. 1. Initially a velocity time series,
or primary time series, is generated at regular and very closely spaced
points in time. This is performed using a first order autoregressive model
as described below. Second, the next particle distance from the control
volume is generated according to the desired conceutraiion model. In a
conveyor-belt manner, the primary velocity series is integrated until the
particle arrives in the control volume, yielding the arrival time. This is
repeated for the next particie and so on, resulting in a secondary time
series of particle velocities and arrival times. Since the velocity vector
at the instant of particle arrival is known. a residence time can also
be generated, knowing the measuring control volume (mev) dimensions
and assuming a random entrance position of the particle into the mev.
These two generation steps, i.e. primary and secondary time series are
described in detail below.
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Figure 1: Schematic Representation of Simulation Program

Processing of the data then consists of prescribing a sample scheme, for
example equidistant in time using the last valid particle (sample and
hold), a controlled processor, a free-running processor, etc. Provision is
made for specifving maximum data transfer rates, i.e. system dead times
processor reset, etc. Note, that processors which perform multiple mea-
surements per bursts can also be simulated since the Doppler frequency,
the residence time and the frequency shift are all known quantities in
the program. A minimum and optionally a maximum number of periods
required for frequency estimation is always specified.

Finally, statistics according to the chosen sampling scheme and estimator
are computed and compared with the known properties of the flow.
Standard estimators are arrival time weighting, transit time weighting,
sample and hold, simple arithmetic averaging and weighting according
to the instantaneous measured velocity.. If it can be assumed that all
particles are processed and only one frequency value per particle is used,
the data processing can be performed directly on the secondary time
series without including the processor step.

Fig. 1 indicates the various steps in the computer simulation. The
data generated at each step can also be stored in files. Thus systematic
parameter variations and their effect on a common simulated time series
can easily be investigated.

Primary Time Series

In the following discussion the generation of a 3D velocity time series
using a first order autoregressive (AR) model is described. A higher
order AR model offers no improvement in the modelling of the turbu-
lence spectrum and furthermore higher order models can no longer be
expressed in closed form for programming.

First order AR series are used to generate three independent series (Box
and Jenkins 1976)
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where z;, are normally distributed random numbers with expectation
zero and unity variance. The velocity vector is given by
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where ¥ = (77,75, 7;) is a prescribed mean vector and C is a symmetric
covariance matrix. The covariance matrix (Reynolds stress tensor) of
the series in Eq. 3 is given as
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The integral time scales of the series in Eq. 3. defined as the integral of
the covariance coefficient. is given by
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To summarize, the mean velocity vector. the Revnolds stress tensor
(Eq. 4) and 9., ¥y, V., are prescribed. The covariance matrix C is
obtained by solving Eq. 5 iteratively. Eqs. T(a-c) are then used to
obtain 1/(1 — &;), which are then substituted into Eq. 7{d-f) to vield
Vzys V23, 0ys. The AR coefficients o; are then used in Eqns. 1 - 3 to
obtain the velocity vector time series.

Secondary Time Series

The particle concentration is always expressed (and entered) in terms
of particles per integral time scale (a) of the measured velocity com-
ponent (v;). The mean velocity (T7) is used to convert this user input
into a spatial distribution, i.e. particles per unit length of fluid which
passes through the control volume. An exponential distribution is used
to compute the distance to the next particle and an integration of the
3D velocity vector determines the corresponding arrival time.

For non-homogeneous particle concentrations, the above procedure is
modified to allow various correlations between velocity and particle con-
centration. In particular. the exponential parameter becomes correlated
with the instantaneous velocity. At present. linear and step-like correla-
tions have been forseen, as summarized in Fig. 2. For linear correlation
functions the average data density @ and the correlation slope must be
prescribed. For step-like correlation functions the average data density
and one of ap,;;, @max or Ac must be prescribed. Also the velocity at
which the correlation step occurs must be given.
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Figure 2: Correlation between particle concentration and velocity: a)
linear positive; b) linear negative; c) step positive; d) step negative.



SIMULATION RESULTS

Simulation results were based on time series extending over 13,000 to
26,000 integral time scales 9,,. In the following presentation only the
expectation of the mean has been examined. The statistical bias has
been expressed as a normalized error, which is the percent deviation
from the true mean value (J) divided by the turbulence intensity squared

(Tu?). )
B= v’v:v’ i Tu= /@5 (8)
z
normalized error = §/Tu® (9)

The data density (Np) is the number of velocity samples per integral
time scale (¥;;). The data rate has not been used explicitly in presenting
these results. The time scales were chosen such that the primary time
series had approximately 100 points per integral time scale. The major
limiting factor in using the simulation program is the computation time.
Using a 386-PC (33MHz) with co-processor, a 1D primary time series
over 15,000 integral scales requires approximately 15 min computation
time. The secondary time series requires about the same time again.
Computations for 3D flows doubles the required time.

Homogeneous Seeding

‘In a first simulation three estimators of the mean velocity, an ensemble
average {unweighted), arrival time weighting and transit time weight-
ing have been computed as function of data density. In Fig. 3. results
for a one-dimensiona! and a three-dimensional flow are presented. The
turbulence intensity in the one-dimensional flow is 26%. In the three-
dimensional flow all three normal stresses are 26% of 77, and T; and 77
are set ot zero. Also the cross-correlation terms are equal to zero.

As expected, the free-running processor with ensemble averaging vields a
constant normalized error of unity, independent of data density. This er-
ror reduces slightly for a three-dimensional flow, since the instantaneous
particle rate is no longer solelv determined by the measured velocity

component, i.e. the v, and v. velocity components sometimes influence

the particle rate. The arrival time weighting yields valid results only
for data densities exceeding approximately Np = 10. The transit time
weighting is appropriate for both flows. showing some overcompensation
in the case of a 3D flowfield.

In Fig. 4 two three-dimensional flowfields have been generated, the first
one again with 26% turbulence and the second with 35% turbulence. At
35% turbulence first occurances of reverse fiow are to be expected, thus
the expected bias should decrease marginally for the ensemble mean.
This is shown to be the case in Fig. 4. Otherwise the arrival time and
transit time results are largely unaffected by turbulence level.

The statistical bias of the ensemble mean is also expected to decrease if
the velocity component being measured is not the velocity component
primarily responsible for the transport of particles through the mea-
suring volume. A simulation experiment was therefore performed in
which the velocity component perpendicular to the measured compo-
nent was increased from zero mean to fourfold the measured mean. A
three-dimensional simulation with a turbulence level of 26% based on the
measured velocity component was used. Fig. 5 indicates that the ensem-
ble and arrival time estimators yield better results since the underlying
measured velocity - particle rate correlation has been reduced. The tran-
sit time weighted results are less affected, but do increase marginaliy,
showing a small positive bias rather than a negative bias.

The above results indicate that the simulations yield trends agreeing
with present understanding of the statistical bias of LDA mean estima-
tors. In Fig. 6 one-dimensional simulations have been compared with
experimental results from Winter et. al (1991a). Two estimators have
been examined, the sample and hold, i.e. weighting with the arrival time
to the nezt particle, and a controlled processor. The controlied processor
arose due to a limited data transfer rate of 10 kHz. Therefore the bias
begins to reduce at a data density of approximately Np = 1.6 (I =
2.3ms) as predicted by Erdmann and Tropca (1984). These results also
confirm those of Winter et al(1991a), that a one-dimensional model is
adequate for turbuience levels of 26%.
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Figure 3: Bias magnitude as a function of data density (Tu = 26%):
open symbols - 1D simulation; solid symbols - 3D simulation.
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Figure 4: Bias magnitude as a function of data density using 3D simu-
lation: open symbols - Tu = 35%: solid symbols - Tu = 26%.
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Figure 5: Bias magnitude as a function of data density (Tu = 26%):
lines - v, = 0; open symbols - v, = v,; solid symbols - vy = 4.
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Figure 6: Comparison of simulated bias magnitude with experiments
from Winter et al(1991b): open symbols - experiments; solid symbols -
simulation



Finally, in Fig. 7 the experimental resuits of Winter eé al. (1991a) using
a controlled processor have been compared with equivalent simulations.
again at a turbulence level of 26%. Agreement is good for all values of
the control period (v,) used.
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Non-homogeneous Seeding

For simplicity the results presented below have been restricted to cases
of linear correlations between velocity and particle density. The slope of
the linear correlation is referenced to the case of homogenous seeding,
i.e. a one-to-one correlation and is expressed by the coefficient

Oa 17

=—.= 10
m, 3. Np (10)

where « is the particle concentration in terms of particles per integral
time scale (Fig. 2) and v, is the measured velocity component. Therefore
m, = 0 for homogeneous seeding and m. = 1 for a particle-velocity
correlation leading to a statistical bias influence of the same order of
magnitude as the velocity itself.

The behaviour of the previously examined estimators in non-homogeneously

seeded flows is shown in Fig. 8 and 9. both valid for a one-dimensional
flow with Tu = 26%. At low data densities the normalized bias of all
estimators is increased by unity for the case of m, = 1 (Fig. 8). As the
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Figure 9: Bias magnitude for non-homogenous seeding.

data density increases, only the arrival time averaging tends towards a
lower bias. reaching acceptable levels at .Vp = 20. Note that the transit
time weighting is unaffected by the data density.

Fig. 9 indicates that a negative particle density - velocity correlation
leads to a decrease of the bias for ensemble averaging. The transit time
weighting now overcompensates and leads to negative bias values. At
higher data densities the arrival time weighting clearly vields the most
accurate results. Results for controlled processors have however not vet
been examined.

For non-homogenously seeded flowfields, little quantitative data on the
effect of seeding density on mean estimators is available and for this
reason an experiment was proposed and performed. A co-flowing jet
was chosen in which the inner and outer flow could independently be
controlled in velocity and seeding density. For these first experiments
only the cases of seeding turned on or off in each of the two flows was
used. As a reference. measurements were performed when both streams
were seeded such that they had the same data density. This was checked
by comparing the quotient - data rate N to mean velocity 7% - in the
inner (z=10mm) and outer flow (z=-10mm) respectively. A sketch of
the measurement region and the mean and RMS velocities are shown in
Fig. 10.

Further detailed measurements were performed at a position y = 30mm,
z = Imm. marked on the profile of Fig. 10 with a dotted line. The tur-
bulence of this position was 24% and the measured integral scale was
0.18ms. The integral scale was measured by taking data at a high, ho-
mogenous seeding density and performing and integrating a slot corre-
lation. The velocity distribution at this position (transit time weighted)
and at two neighbouring positions (z = Omm. r = 2mm) are shown
in Fig. 11, together with the change in integral scale. At homogenous
seeding conditions the data density was approximately 0.1 particles per
integral scale.

As a first step to compare simulations to experimental results, time
series were generated for homogeneous seeding for the positions x = 0,
1 and 2 mm, such that the ensemble mean velocities at each point were
in agreement with the experiments. The measured integral scales were
used. Comparisons were then drawn for the arrival time and transit
time weighting as shown in Fig. 12. The agreement shown here is good
and therefore the time series are appropriate for investigating the cases
of non-homogeneous seeding.
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Figure 10: Schematic of co-flowing jet and velocity profile at downstream
position of y = 30mm.
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Figure 12: Comparison of predicted and measured bias of homogenously
seeded flowfield: open symbols - simulation, solid symbols - measure-
ments.

Simulations including the processor step were also performed, in which
‘the parameters : number of fringes (93), shift frequency (0 MHz), op-

eration mode (total burst), maximum data transfer rate (260 kHz for .

DOSTEK 1400A interface) and minimum number of cycles (8) were
entered. There was however no deviation in the results from those us-
ing the secondary time series directly. Thus the processor was a true
free-running processor and the processor step was left out of subsequent
simulations.

For homogeneously seeded, 1D flows the data rate is linearly propor-
tional to the velocity, i.e. N (vz) = kyr;. for non-homogeneously seeded
flows, in this case turning the inner or outer flow off, the data rate must
be more generally related to the velocity, eq. N = f(v;). For the ideal
case, for instance when the outer flow seeding is turned off, the data rate
in the mixing region takes the form

N =0

= k,v,

vz < ¥
v > U, (11)

In fact, this will never occur, since the mixing is not complete. It is
important to understand that N = f(v;) relates to the instantaneous
velocity and not the mean velocity. Thus, even to measure the function
f, arelatively high data density is required (Np > 20), as is also the case
to directly measure the relation between arrival time and instantaneous
velocity! In the present experiment, values of Np did not exceed 1.0,
thus the function f could only be approximated by fitting the simulation
to selected experimental results.

For the present case. the parameter m, in the simulation was therefore
chosen to yield exact agreement to the measured ensemble and approx-
imate agreement to the measured arrival/transit time weighted results.
A summary of the results for inner and outer flow seeding is shown in
Fig. 14a and 14b respectively. The chosen values for m, are also included
in this figure. The statistical bias has changed significantly compared
to the results from a homogeneously seeded flow. Although previous re-
sults (Fig. 9) indicated that the arrival time weighted average should be
consistently the most reliable estimator, the necessary data density of
approximately Np = 10 was not achieved in these experiments. Values
of Np varied between 0.3 and 1.0.

Finally, in a manner similar to Fig. 9, the measured bias is compared
to the simulated bias (1D) in Fig. 15. For the experimental results
shown in this figure the m, value was that found iteratively while fitting
the simulation results. Again, the agreement between simulation and
experiment is very good.
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Figure 13: Schematic representation of relation between data rate and
measured velocity for homogenous and non-homogenous seeding.
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In Fig. 13 the function f is illustrated for homogeneous and non-homogeneous
seeding (outer flow seeding turned off). It can be assumed that the shape
of f lies between a linear positive and a step positive correlation.

Figure 14: Comparison of predicted and measured bias a) inner flow
seeding; b) outer flow seeding (symbols as in Fig. 12)
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Conclustons

This work introduces a powerful simulation tool for investigating all
aspects of statistical bias in laser anemometry. Results have been pre-
sented for mean velocity estimators, however extensions to variance or
spectral estimators are straight-forward. The case of non-homogeneously
seeded flow has been examined quantitatively and results indicate that
correct measurements are possible using the arrival time weighting pro-
vided a minimum mean data density of Np > 10 is achieved. Otherwise,
the correct velocity measurement could be inferred by using the simula-
tion program and fitting the parameter m, to achieve agreement between
ensemble, arrival and transit time weighted results.
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