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ABSTRACT

The estimation of spectra from LDA data using model parameter estimation is examined.
An ARMA (Autoregressive Moving Average) process is used to model the flow velocity
fluctuations and the model parameters are estimated through the autocorrelation func-
tion. This new technique is described in detail and its performance, particularily for low
data densities is examined using simulations and experiments. The estimator is shown to
be well suited, not only for low data densities, but also for short record lengths, as would
be expected in some transient flowfields.

INTRODUCTION

The randomness of particle arrivals in the measurement volume of a laser Doppler anemo-
meter (LDA) must be considered when computing statistical quantities of the velocity
field. This is especially true for the estimation of the power spectral density, or spec-
trum, since the arrival times of particles will directly influence the frequency of velocity
fluctuations which can be resolved.
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A considerable number of spectral estimators for LDA data have been suggested in the
past, several of which will be described below. Generally speaking however, most esti-
mators perform well if the data density, i.e. the mean number of particles per integral
flow time scale, is sufficiently high. The challenge to perform well is greater if the data
density decreases and even more so, if at the same time, the data set is of short dura-
tion, for example in the case of transient flowfields such as in engines. This is precisely
the situation which motivated the present work, which introduces a new LDA spectral
estimator based on model parameter estimation.
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MODEL BASED SPECTRAL ESTIMATION

The input velocity information is compared to the process model on the basis of a tar-
get function, such as the autocorrelation function or the spectrum. The deviations are
evaluated as an error function, which is used to alter the process model parameters to
iteratively achieve minimum deviation. The resultant parameter set then represents the
best match of the model to the physical process.

Derived Input
Statistics, eg. [+ Velocity
mean, variance Series Target function:
i

Derived Target B
Function, eg. 9= u(t)ulty)

R(r), S(f), u(t) 5y=1

: with (k—1)A7 < t;—t; < kArand i #

Derived Error

F""C:ion Error function:
&
f L
Derived Target et = (RN, — gi)*
Function, eg. paet
R(7), 5(f), ul(t . .
Nf’:;?f;?«:ie:n ) #f) ® with number of slots N, slot duration A7,
£* & min k-th value of ACF Ry, mumber of products
Process
Model N for g; and number of samples N

PROCESS MODEL
Basis for matching the flow velocity fluctuations: ARMA (Autoregressive Moving
Average) Process

B General form for time sequence [Box& Jenkins, 1976]
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with order of AR process p, order of MA Process ¢ and white noise a.
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Power density spectrum (“Spectrum”)
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GLOBAL SPECTRAL ESTIMATION STRATEGY
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CONCLUSIONS

W The new LDA spectral estimator presupposes that the physical process of velocity
fluctuations can be described by a model (such as autoregressive model).

W The present model based spectral estimator yields especially reliable results for low
data densities and short data records. It appears to work reliable also for very low
data densities. The performance is clearly superior to well-known non-parametric LDA
spectral estimation methods.

W At properties of the physical process which are not described by the choosen model, the
present estimator doesn’t perform well (eg. at dominant low frequencies). Nevertheless,
the performance is not worse than other available estimators.

B Improvement may be achievable using other models or/and the combination of model
based estimation and signal reconstruction.

Die vorgestellten Ergebnisse sind Resultate des durch die DFG geforderten Projektes
Mu1117/1-1.



