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One of the most important quantities in burst signals from LDA measurements is the Doppler
frequency which corresponds to the velocity of the detected particle. This article describes
new algorithms for estimating the Doppler frequency from LDA burst signals with very small
statistical fluctuations using model-based or parametric procedures. The results are compared
to the three-point Gauss interpolation from the power spectral density.

1. INTRODUCTION

The most important parameter of a burst signal recorded by a laser Doppler anemometer is the
Doppler frequency. The frequency estimate leads to the velocity of the detected tracer particle
but has some principle limits in it’s accuracy [1] which appears as random noise in the velocity
series. Minimizing this noise is very important e.g. for the estimation of turbulence spectra. A
smaller noise level increases the range of correct spectral estimates up to higher frequencies and
to lower power spectral densities.

Generally, frequency domain processing using the power spectral density (PSD) [2, 4, 7] or
the autocorrelation function (ACF) [3] are superior to time domain estimation of the Doppler
frequency, however usually stationarity over the obseration time is assumed. The variance of an
ideal estimator, i.e. with the minimum estimation variability is given by the Cramer-Rao-Lower-
Bound (CRLB) [6, §|.

An improvement to established parameter estimation procedures can be obtained by using
model-based estimation, as outlined for instance in [5]. With this technique the signal character
must be known beforehand and the model parameters are chosen to achieve a best fit to the
signal.

An appropriate model of an LDA burst (with DC part removed) is the Gauss modulated
cosine function
t—to
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u(t) = AG < ) cos(2ntfp + ¢) (1)
with the Gauss-like function G(x) = e*"’"2/2, the signal amplitude Ay, the Doppler frequency fp,
the phase ¢, the arrival time ¢g and the width b; of the Gauss envelope given through the size of
the measurement volume. The ACF of such a signal is

T

R(1) = ApG ( ) cos(2n7 ) 2)

br

with bp = v/2b; and the PSD is

S(f) = 4s [G(f;SfD) +G(f§SfD)] 3)
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Figure 1: Simulated burst signal a) with DC part and b) filtered.

with bg = ﬁ

Therefore, the best model to estimate the Doppler frequency is the Gauss function for the
estimation based on the PSD and the Gauss modulated cosine function for the ACF based
estimation.

In the following section the procedures of burst signal processing are introduced in detail.
The performance of the new estimators has been investigated using numerical simulations that
are described in section 3.. The results of that performance test are presented in section 4.. The
last section discusses the results and derives some tasks for future work.

2. SIGNAL PROCESSING
2.1 Filter

To split the burst signal (figure 1a) into its AC and DC part a digital filter based on discrete
Fourier transfom (DFT) is used. The equidistant sampled time signal u; is transformed into the
frequency domain using the DFT

N-—1
Uj=> we N =0 . N-1 (4)
=0

with the imaginary unit i and the complex amplitude spectrum U; of the burst signal. Note
that the spectrum is symmetric to J = N/2. To suppress the DC part of the burst signal all
spectral values with corresponding frequencies f; = fyj/N which are smaller than a given cut-off
frequency f. = 0.4MHz are set to zero, that means for all j < Nf./fs;. With respect to the
symmetry, the same has to be done for all j > N(1 — f./fs). The new complex amplitude
spectrum is transformed back to the time domain using the inverse DT (IDFT).

N—1
1 .
ui:NZUjeQWHZJ/N i=0...N-1 (5)
7=0
Since the spectrum remains symmetry about zero (even function), also the filtered time signal
is real. The phase information in the high frequency range is preserved through this procedure.
Figure 1b shows the filtered signal of the burst shown in figure 1a.
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Figure 2: a) Power spectrum and b) autocorrelation function of a burst signal

2.2 Signal-To-Noise-Ratio

The signal-to-noise-ratio (SNR) of the input signal is taken from the filtered signal. It is defined
as
2

95

ON
with the signal power (variance) 0% and the noise power (variance) o%. To calculate this value
a separation of the signal and the noise is required. In real measurements the noise free signal
is not accessable. For this reason several definitions exist using various assumptions about the
signal characteristics. In this paper only numerical simulations will be used. Therefore, a noise
free signal can be generated where the noise is added in a second step. Therefore, the definition
given by equation (6) can be used directly. All calculations (signal generating and filtering) have
to be performed once with the noise free signal to obtain a reference and a second time with the
added noise.

2.3 Statistical Functions

The next step of the signal processing is the calculation of statistical functions. This requires
that all parameters of the signal are constant within the recorded time. Especially, the Doppler
frequency has to be time independent. In that case, the ACF and the PSD contain all signal
quantities except the information about arrival time or the spectral phase. The frequency es-
timation can be performed on these functions much better than from the original time signal
because of the better separation of noise and signal components.

The PSD of the simulated (and filtered) burst signal can be calculated using

2
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S; = j=0... N—1. (7)
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Figure 2a shows the PSD of the burst shown in figure 1.
The autocorrelation function of the simulated (and filtered) burst signal can be calculated
using
N-1

f 2miij /N : N N
Ri:ﬁSZSje“W i=—7 .-l (8)
Jj=0
Figure 2b shows the ACF of the burst shown in figure 1. The noise peak at 7 = 0 is small but
evident.
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Figure 3: a) The ACF and the corresponding Hilbert transform and b) the ACF amplitude
function
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Figure 5: A schematic representation of model
Figure 4: Spectral peak interpolation scheme parameter estimation

One proposed frequency estimator uses the envelope of the modulated cosine in the ACF. To
obtain the envelope the Hilbert transform can be used. The Hilbert transform of a given signal
can be calculated as follows. The Fourier transform (equation 4) is performed on the signal and
the complex spectral amplitude is obtained. The spectral coefficient are inverted for j > N/2.
An inverse Fourier transform (equation 5) then of this asymmetric spectrum leads to a complex
signal with the Hilbert transform in the imaginary part. Figure 3a shows the ACF R; and the
corresponding Hilbert transform Rp;. The ACF amplitude function can be obtained as

H; = \/R?+ R%, (9)

Figure 3b shows the ACF amplitude function of the burst shown in figure 1. The noise peak at
7 = 0 can also be seen here very clearly.

2.4 Frequency Estimation
2.4.1 Three-Point Gauss Interpolation

To evaluate the performance of the new frequency estimators a comparison to the three-point
Gauss interpolation [2| was realized. The algorithm includes the maximum of the PSD and the
two neighbouring values. The use of a logarithmic scaling reduces the Gauss function to a second
order polynomial. Assuming, S; is the maximum spectral value and S;—; and Sjy; are the values
of the preceding and the following spectral lines, the deviation § of the refined Doppler frequency



estimate to the index 7 of the maximum spectral value (figure 4) becomes

Si—1 — Si+1
6= - 10
2(si41 — 28; + 8i-1) (10)
with the notation s; = log, Sj. The Doppler frequency becomes
fp=(i+0)fs/N. (11)

2.4.2 All Points Gauss Fit

A more accurate algorithm can be obtained by fitting the entire PSD by a Gauss function. The
solution cannot fit all spectral points and has to be done model-based [5]. The basic procedure
to be followed is shown schematically in figure 5. The estimated PSD S; is compared to the
model PSD

s g4 (fidp j=0 ... NJ2 (12)

J bs

with f; = fsj/N and the three parameters Ag, fp and bs. The upper index (m) indicates the

model PSD in contrast to the PSD of the measured or simulated signal (without an upper index).
The deviation between the two functions are evaluated as an error value

N/2

e= Y (s-sm) (13)

j=INfe/fs]+1

which is used to alter the model parameters to achieve the minimum deviation iteratively. The
resultant parameter set then represents the best match of the model to the PSD of the measured
burst signal.

The optimum amplitude Ag in equation (12) can be expressed explicitly by

N/2 ) Ili—f
S Sie (52)
. (14)
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To find the optimum of the remaining parameters a searching routine is used that optimizes
the parameter set recursively. It starts with the initial parameter set bg = fp = fs/4. Both
parameters are then varied randomly with a Gauss distribution and a standard deviation of f5/4.
If a better parameter set with a smaller error e is found, this parameter set becomes the center
of further iterations. The frequency range for fp should be limited to the range between the
cut-off frequency f. of the high pass filter (section 2.1) and half of the Fourier frequency range
fs/2. The Gauss width bg should be positive. To reduce the searching range and to obtain
convergence, the standard deviation of the Gauss distribution has to be reduced from iteration
step to iteration step by a constant factor. The factor has been chosen in such a way that after
20000 steps a distribution width of 1 x 107 MHz has been reached. That leads to a “freezing”
of the parameters into the best match. The Doppler frequency can be taken directly from the
optimized parameter set.

2.4.3 Gauss Modulated Cosine Function

Another possibility of a model-based frequency estimation is the use of the ACF. As the model
ACF, the Gauss modulated cosine function

Ti

R™ = ApG (b ) cos(2n7i ) (15)
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with 7; = i/ fs and the three parameters Ag, fp and bg can be used. Note that the ACF is
symmetric about 7 = 0. For this reason there is neither a displacement of the Gauss envelope
nor a phase in the argument of the cosine function. To reduce the number of iteratively opti-
mized parameters the estimation of the Gauss envelope and the modulated cosine function are
performed separately. To get a good pre-estimation of the Gauss envelope the ACF amplitude
function H; (equation 9) can be used. The appropriate model

H™ = ApG <_) (16)
br

with the amplitude Ar and the Gauss width bg is used. To evaluate the deviation of the model

from the original signal the error value

N/2-1

2
e= Y (H - H}m)) (17)
i=1
is used. The amplitude Ar can be expressed explicitly by

N/2-1 ;
S G ()
Ap = Nl <7 (18)
wi (e (&)
Note that the index runs only over half of the time lag range due to the symmetry and the value
at 7 = 0 is ignored because of the noise.

The optimum of the parameter br has to be found iteratively starting with bg = N/(4fs).
The standard deviation of this parameter is N/(4fs) at the beginning and is reduced after 2000
iteration steps to 1 x 1076 us. Only positive values should be tested. The reduced number
of iteration steps compared to the PSD based estimation is sufficient because of the reduced
parameter set to be optimized.

Once the optimum for the amplitude Ag and the width bg of the Gauss envelope has been
found the Doppler frequency can be estimated from the ACF with the reduced model
R™ = H™ cos(2n7; fp) (19)

7

using the fixed envelope function HZ-(m). The error value is

N/2-1

e= Y (Ri—RE’“))Q (20)

i=1
and the searching procedure starts with fp = fs/4. The standard deviation of this parameter
is fs/4 at the beginning and is reduced after 2000 steps to 1 x 1076 MHz. The valid parameter
range lies between f. and f;/2. The Doppler frequency can be taken directly from the optimized
parameter set.

3. SIGNAL SIMULATION

The signal simulation gives an equidistant spaced sampled signal with NV = 256 values and the
sampling frequency fs = 10 MHz

ti—to—0 ti—to+d,
u; = A G(ti;—to> cos(27rtifD+¢)+G( b ;)(%:)( b G)

t
i, = g\Jok i=0..N-1 (22)

+ 1, (21)



parameter | unit | mean m | variation range A
A - 0.8 0.2
/b MHz 1.0 0.3
0] - 1.1 3.0
to s 11.5 2.5
log, 0% - -3 4
by s 2.0 0.5
el s 1.3 0.25

Table 1: Mean values and variation range of burst simulation parameters
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Figure 6: a) Mean frequency deviation and b) estimator’s variances of frequency deviation

with the Gauss-like function G(z) = e*"’"2/2, the sampling times ¢; = i/ fs, the signal amplitude
Ay, the Doppler frequency fp, the phase ¢, the arrival time #g, the noise component ;, the noise
power O'IQV and the Gauss distributed value g with a variance of 1. The quantity b; influences
the width of the Gauss envelope. It corresponds to the size of the measurement volume. The
quantity dg doesn’t have a direct correspondence to a measurable quantity. It influences the
modulation index of the simulated signal. Figure 1la shows one realization of a simulated burst
signal using equations (21) and (22).

For each simulated burst signal all simulation parameters are changed. The parameter values
are taken randomly from an interval [m — A;m + A] with a constant distribution. For the
variation of the noise power the logarithm log, o3 was used. In table 1 the mean values m and
the variation range A of the simulation parameters are listed.

4. RESULTS

The signal simulation and the three frequency estimations have been carried out 10000 times.
In figure 6 the mean frequency deviation and the variances of the estimators are shown in
comparison. In the stable range (above 0dB) all estimators are unbiased. Both model-based
methods have a much smaller estimation variance than the three-point Gauss interpolation. A
significant difference between the model-based methods cannot be seen. Below 0dB the PSD
based estimates and below -2 dB the ACF based estimates and below -4 dB the three-point Gauss
interpolation become unstable. The variances of the frequency estimates increase rapidly. For
very small input SNRs the variances of all algorithms are constant with respect to the random
frequency estimates taken from a limited interval.



5. CONCLUSIONS AND PERSPECTIVE

The results of the performance test show that the model-based estimation of the Doppler fre-
quency from LDA burst signals is possible in principle. The results for the estimation based
on the PSD and the estimation based on the ACF are very similar. That indicates that the
parameter estimation for the Gauss envelope of the ACF and the modulated Doppler signal can
be performed separately. That leads to a faster routine because the number of iteration steps to
optimize two parameters at once has to be 10 times as large as for only one parameter because
of the larger dimension of the parameter range.

Both model-based routines show however high probability of a completely wrong estimate.
A possible way to overcome this is a pre-estimation of all model parameters with more stable
algorithms in combination with a reduced searching interval.

The new Doppler frequency estimators take all values of the PSD/ACF into account. That
leads to a very small random deviation of the estimates. On the other hand the new estimators
require the entire PSD/ACF for a correct estimation. The start of the burst record should be
long before any burst detection algorithm can give a signal.

One parameter of the investigated model, the Gauss width bg, was not used. But it could
improve the estimation of the transit time. So far the transit time is quantified by an integral
number of Doppler periods and it is amplitude dependent. Defining the edges of the measurement
volume to be the points with e~? of the maximal amplitude, the transit time is TT = 4b; =
21/2bg. This transit time estimator is more reliable, it has a smaller variablity, no quantization
and it is amplitude independent.

The searching routines take too much time for online measurements (20s for the ACF and
100 s for the PSD on a Pentium II system). In future, faster routines should be developed that
work together with more stable pre-estimations.

Another future development could be to include non-Gaussian beam models with ACF models
other than the Gauss modulated cosine function.
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