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omOne of the most important quantities in burst signals from LDA measurements is the Dopplerfrequen
y whi
h 
orresponds to the velo
ity of the dete
ted parti
le. This arti
le des
ribesnew algorithms for estimating the Doppler frequen
y from LDA burst signals with very smallstatisti
al �u
tuations using model-based or parametri
 pro
edures. The results are 
omparedto the three-point Gauss interpolation from the power spe
tral density.1. INTRODUCTIONThe most important parameter of a burst signal re
orded by a laser Doppler anemometer is theDoppler frequen
y. The frequen
y estimate leads to the velo
ity of the dete
ted tra
er parti
lebut has some prin
iple limits in it's a

ura
y [1℄ whi
h appears as random noise in the velo
ityseries. Minimizing this noise is very important e.g. for the estimation of turbulen
e spe
tra. Asmaller noise level in
reases the range of 
orre
t spe
tral estimates up to higher frequen
ies andto lower power spe
tral densities.Generally, frequen
y domain pro
essing using the power spe
tral density (PSD) [2, 4, 7℄ orthe auto
orrelation fun
tion (ACF) [3℄ are superior to time domain estimation of the Dopplerfrequen
y, however usually stationarity over the obseration time is assumed. The varian
e of anideal estimator, i.e. with the minimum estimation variability is given by the Cramer-Rao-Lower-Bound (CRLB) [6, 8℄.An improvement to established parameter estimation pro
edures 
an be obtained by usingmodel-based estimation, as outlined for instan
e in [5℄. With this te
hnique the signal 
hara
termust be known beforehand and the model parameters are 
hosen to a
hieve a best �t to thesignal.An appropriate model of an LDA burst (with DC part removed) is the Gauss modulated
osine fun
tion u(t) = AtG�t� t0bt � 
os(2�tfD + �) (1)with the Gauss-like fun
tion G(x) = e�x2=2, the signal amplitude At, the Doppler frequen
y fD,the phase �, the arrival time t0 and the width bt of the Gauss envelope given through the size ofthe measurement volume. The ACF of su
h a signal isR(�) = ARG� �bR� 
os(2��fD) (2)with bR = p2bt and the PSD isS(f) = AS �G�f � fDbS �+G�f + fDbS �� (3)
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Figure 1: Simulated burst signal a) with DC part and b) �ltered.with bS = 12�bR .Therefore, the best model to estimate the Doppler frequen
y is the Gauss fun
tion for theestimation based on the PSD and the Gauss modulated 
osine fun
tion for the ACF basedestimation.In the following se
tion the pro
edures of burst signal pro
essing are introdu
ed in detail.The performan
e of the new estimators has been investigated using numeri
al simulations thatare des
ribed in se
tion 3.. The results of that performan
e test are presented in se
tion 4.. Thelast se
tion dis
usses the results and derives some tasks for future work.2. SIGNAL PROCESSING2.1 FilterTo split the burst signal (�gure 1a) into its AC and DC part a digital �lter based on dis
reteFourier transfom (DFT) is used. The equidistant sampled time signal ui is transformed into thefrequen
y domain using the DFTUj = N�1Xi=0 uie�2�iij=N j = 0 : : : N � 1 (4)with the imaginary unit i and the 
omplex amplitude spe
trum Uj of the burst signal. Notethat the spe
trum is symmetri
 to J = N=2. To suppress the DC part of the burst signal allspe
tral values with 
orresponding frequen
ies fj = fsj=N whi
h are smaller than a given 
ut-o�frequen
y f
 = 0:4MHz are set to zero, that means for all j < Nf
=fs. With respe
t to thesymmetry, the same has to be done for all j > N(1 � f
=fs). The new 
omplex amplitudespe
trum is transformed ba
k to the time domain using the inverse DFT (IDFT).ui = 1N N�1Xj=0 Uje2�iij=N i = 0 : : : N � 1 (5)Sin
e the spe
trum remains symmetry about zero (even fun
tion), also the �ltered time signalis real. The phase information in the high frequen
y range is preserved through this pro
edure.Figure 1b shows the �ltered signal of the burst shown in �gure 1a.
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Figure 2: a) Power spe
trum and b) auto
orrelation fun
tion of a burst signal2.2 Signal-To-Noise-RatioThe signal-to-noise-ratio (SNR) of the input signal is taken from the �ltered signal. It is de�nedas SNR=dB = 10 log10� �2S�2N � (6)with the signal power (varian
e) �2S and the noise power (varian
e) �2N . To 
al
ulate this valuea separation of the signal and the noise is required. In real measurements the noise free signalis not a

essable. For this reason several de�nitions exist using various assumptions about thesignal 
hara
teristi
s. In this paper only numeri
al simulations will be used. Therefore, a noisefree signal 
an be generated where the noise is added in a se
ond step. Therefore, the de�nitiongiven by equation (6) 
an be used dire
tly. All 
al
ulations (signal generating and �ltering) haveto be performed on
e with the noise free signal to obtain a referen
e and a se
ond time with theadded noise.2.3 Statisti
al Fun
tionsThe next step of the signal pro
essing is the 
al
ulation of statisti
al fun
tions. This requiresthat all parameters of the signal are 
onstant within the re
orded time. Espe
ially, the Dopplerfrequen
y has to be time independent. In that 
ase, the ACF and the PSD 
ontain all signalquantities ex
ept the information about arrival time or the spe
tral phase. The frequen
y es-timation 
an be performed on these fun
tions mu
h better than from the original time signalbe
ause of the better separation of noise and signal 
omponents.The PSD of the simulated (and �ltered) burst signal 
an be 
al
ulated usingSj = 1fsN �����N�1Xi=0 uie�2�iij=N �����2 j = 0 : : : N � 1: (7)Figure 2a shows the PSD of the burst shown in �gure 1.The auto
orrelation fun
tion of the simulated (and �ltered) burst signal 
an be 
al
ulatedusing Ri = fsN N�1Xj=0 Sje2�iij=N i = �N2 : : : N2 � 1: (8)Figure 2b shows the ACF of the burst shown in �gure 1. The noise peak at � = 0 is small butevident.
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Figure 3: a) The ACF and the 
orresponding Hilbert transform and b) the ACF amplitudefun
tion s
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hemati
 representation of modelparameter estimationOne proposed frequen
y estimator uses the envelope of the modulated 
osine in the ACF. Toobtain the envelope the Hilbert transform 
an be used. The Hilbert transform of a given signal
an be 
al
ulated as follows. The Fourier transform (equation 4) is performed on the signal andthe 
omplex spe
tral amplitude is obtained. The spe
tral 
oe�
ient are inverted for j � N=2.An inverse Fourier transform (equation 5) then of this asymmetri
 spe
trum leads to a 
omplexsignal with the Hilbert transform in the imaginary part. Figure 3a shows the ACF Ri and the
orresponding Hilbert transform RHi. The ACF amplitude fun
tion 
an be obtained asHi =qR2i +R2Hi (9)Figure 3b shows the ACF amplitude fun
tion of the burst shown in �gure 1. The noise peak at� = 0 
an also be seen here very 
learly.2.4 Frequen
y Estimation2.4.1 Three-Point Gauss InterpolationTo evaluate the performan
e of the new frequen
y estimators a 
omparison to the three-pointGauss interpolation [2℄ was realized. The algorithm in
ludes the maximum of the PSD and thetwo neighbouring values. The use of a logarithmi
 s
aling redu
es the Gauss fun
tion to a se
ondorder polynomial. Assuming, Si is the maximum spe
tral value and Si�1 and Si+1 are the valuesof the pre
eding and the following spe
tral lines, the deviation Æ of the re�ned Doppler frequen
y



estimate to the index i of the maximum spe
tral value (�gure 4) be
omesÆ = si�1 � si+12(si+1 � 2si + si�1) (10)with the notation sj = loge Sj. The Doppler frequen
y be
omesfD = (i+ Æ)fs=N: (11)2.4.2 All Points Gauss FitA more a

urate algorithm 
an be obtained by �tting the entire PSD by a Gauss fun
tion. Thesolution 
annot �t all spe
tral points and has to be done model-based [5℄. The basi
 pro
edureto be followed is shown s
hemati
ally in �gure 5. The estimated PSD Sj is 
ompared to themodel PSD S(m)j = ASG�fj � fDbS � j = 0 : : : N=2 (12)with fj = fsj=N and the three parameters AS , fD and bS. The upper index (m) indi
ates themodel PSD in 
ontrast to the PSD of the measured or simulated signal (without an upper index).The deviation between the two fun
tions are evaluated as an error valuee = N=2Xj=bNf
=fs
+1�Sj � S(m)j �2 ; (13)whi
h is used to alter the model parameters to a
hieve the minimum deviation iteratively. Theresultant parameter set then represents the best mat
h of the model to the PSD of the measuredburst signal.The optimum amplitude AS in equation (12) 
an be expressed expli
itly byAS = PN=2j=bNf
=fs
+1 SjG�fj�fDbS �PN=2j=bNf
=fs
+1 �G�fj�fDbS ��2 : (14)To �nd the optimum of the remaining parameters a sear
hing routine is used that optimizesthe parameter set re
ursively. It starts with the initial parameter set bS = fD = fs=4. Bothparameters are then varied randomly with a Gauss distribution and a standard deviation of fs=4.If a better parameter set with a smaller error e is found, this parameter set be
omes the 
enterof further iterations. The frequen
y range for fD should be limited to the range between the
ut-o� frequen
y f
 of the high pass �lter (se
tion 2.1) and half of the Fourier frequen
y rangefs=2. The Gauss width bS should be positive. To redu
e the sear
hing range and to obtain
onvergen
e, the standard deviation of the Gauss distribution has to be redu
ed from iterationstep to iteration step by a 
onstant fa
tor. The fa
tor has been 
hosen in su
h a way that after20 000 steps a distribution width of 1 � 10�6MHz has been rea
hed. That leads to a �freezing�of the parameters into the best mat
h. The Doppler frequen
y 
an be taken dire
tly from theoptimized parameter set.2.4.3 Gauss Modulated Cosine Fun
tionAnother possibility of a model-based frequen
y estimation is the use of the ACF. As the modelACF, the Gauss modulated 
osine fun
tionR(m)i = ARG� �ibR� 
os(2��ifD) (15)



with �i = i=fs and the three parameters AR, fD and bR 
an be used. Note that the ACF issymmetri
 about � = 0. For this reason there is neither a displa
ement of the Gauss envelopenor a phase in the argument of the 
osine fun
tion. To redu
e the number of iteratively opti-mized parameters the estimation of the Gauss envelope and the modulated 
osine fun
tion areperformed separately. To get a good pre-estimation of the Gauss envelope the ACF amplitudefun
tion Hi (equation 9) 
an be used. The appropriate modelH(m)i = ARG� �ibR� (16)with the amplitude AR and the Gauss width bR is used. To evaluate the deviation of the modelfrom the original signal the error valuee = N=2�1Xi=1 �Hi �H(m)i �2 (17)is used. The amplitude AR 
an be expressed expli
itly byAR = PN=2�1i=1 HiG� �ibR�PN=2�1i=1 �G� �ibR��2 : (18)Note that the index runs only over half of the time lag range due to the symmetry and the valueat � = 0 is ignored be
ause of the noise.The optimum of the parameter bR has to be found iteratively starting with bR = N=(4fs).The standard deviation of this parameter is N=(4fs) at the beginning and is redu
ed after 2 000iteration steps to 1 � 10�6 �s. Only positive values should be tested. The redu
ed numberof iteration steps 
ompared to the PSD based estimation is su�
ient be
ause of the redu
edparameter set to be optimized.On
e the optimum for the amplitude AR and the width bR of the Gauss envelope has beenfound the Doppler frequen
y 
an be estimated from the ACF with the redu
ed modelR(m)i = H(m)i 
os(2��ifD) (19)using the �xed envelope fun
tion H(m)i . The error value ise = N=2�1Xi=1 �Ri �R(m)i �2 (20)and the sear
hing pro
edure starts with fD = fs=4. The standard deviation of this parameteris fs=4 at the beginning and is redu
ed after 2 000 steps to 1� 10�6MHz. The valid parameterrange lies between f
 and fs=2. The Doppler frequen
y 
an be taken dire
tly from the optimizedparameter set.3. SIGNAL SIMULATIONThe signal simulation gives an equidistant spa
ed sampled signal with N = 256 values and thesampling frequen
y fs = 10MHzui = At 24G� ti � t0bt � 
os(2�tifD + �) + G� ti�t0�ÆGbt �+G� ti�t0+ÆGbt �G�2ÆGbt � 35+ ~ui (21)~ui = ~gq�2N i = 0 : : : N � 1 (22)



parameter unit mean m variation range �A - 0.8 0.2fD MHz 1.0 0.3� - 1.1 3.0t0 �s 11.5 2.5loge �2N - �3 4bt �s 2.0 0.5ÆG �s 1.3 0.25Table 1: Mean values and variation range of burst simulation parametersa) b)

Figure 6: a) Mean frequen
y deviation and b) estimator's varian
es of frequen
y deviationwith the Gauss-like fun
tion G(x) = e�x2=2, the sampling times ti = i=fs, the signal amplitudeAt, the Doppler frequen
y fD, the phase �, the arrival time t0, the noise 
omponent ~ui, the noisepower �2N and the Gauss distributed value ~g with a varian
e of 1. The quantity bt in�uen
esthe width of the Gauss envelope. It 
orresponds to the size of the measurement volume. Thequantity ÆG doesn't have a dire
t 
orresponden
e to a measurable quantity. It in�uen
es themodulation index of the simulated signal. Figure 1a shows one realization of a simulated burstsignal using equations (21) and (22).For ea
h simulated burst signal all simulation parameters are 
hanged. The parameter valuesare taken randomly from an interval [m � �;m + �℄ with a 
onstant distribution. For thevariation of the noise power the logarithm loge �2N was used. In table 1 the mean values m andthe variation range � of the simulation parameters are listed.4. RESULTSThe signal simulation and the three frequen
y estimations have been 
arried out 10 000 times.In �gure 6 the mean frequen
y deviation and the varian
es of the estimators are shown in
omparison. In the stable range (above 0 dB) all estimators are unbiased. Both model-basedmethods have a mu
h smaller estimation varian
e than the three-point Gauss interpolation. Asigni�
ant di�eren
e between the model-based methods 
annot be seen. Below 0 dB the PSDbased estimates and below -2 dB the ACF based estimates and below -4 dB the three-point Gaussinterpolation be
ome unstable. The varian
es of the frequen
y estimates in
rease rapidly. Forvery small input SNRs the varian
es of all algorithms are 
onstant with respe
t to the randomfrequen
y estimates taken from a limited interval.



5. CONCLUSIONS AND PERSPECTIVEThe results of the performan
e test show that the model-based estimation of the Doppler fre-quen
y from LDA burst signals is possible in prin
iple. The results for the estimation basedon the PSD and the estimation based on the ACF are very similar. That indi
ates that theparameter estimation for the Gauss envelope of the ACF and the modulated Doppler signal 
anbe performed separately. That leads to a faster routine be
ause the number of iteration steps tooptimize two parameters at on
e has to be 10 times as large as for only one parameter be
auseof the larger dimension of the parameter range.Both model-based routines show however high probability of a 
ompletely wrong estimate.A possible way to over
ome this is a pre-estimation of all model parameters with more stablealgorithms in 
ombination with a redu
ed sear
hing interval.The new Doppler frequen
y estimators take all values of the PSD/ACF into a

ount. Thatleads to a very small random deviation of the estimates. On the other hand the new estimatorsrequire the entire PSD/ACF for a 
orre
t estimation. The start of the burst re
ord should belong before any burst dete
tion algorithm 
an give a signal.One parameter of the investigated model, the Gauss width bR, was not used. But it 
ouldimprove the estimation of the transit time. So far the transit time is quanti�ed by an integralnumber of Doppler periods and it is amplitude dependent. De�ning the edges of the measurementvolume to be the points with e�2 of the maximal amplitude, the transit time is TT = 4bt =2p2bR. This transit time estimator is more reliable, it has a smaller variablity, no quantizationand it is amplitude independent.The sear
hing routines take too mu
h time for online measurements (20 s for the ACF and100 s for the PSD on a Pentium II system). In future, faster routines should be developed thatwork together with more stable pre-estimations.Another future development 
ould be to in
lude non-Gaussian beam models with ACF modelsother than the Gauss modulated 
osine fun
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