
E�cient estimation of power spectral density fromlaser Doppler anemometer dataE. M�uller1, H. Nobach1 and C. Tropea21Fachbereich Elektrotechnik, Universit�at Rostock, Rostock, Germany2Lehrstuhl f�ur Str�omungsmechanik, Universit�at Erlangen-N�urnberg, Erlangen, GermanyAbstractA non-biased estimator of power spectral density (PSD) has been introduced for data obtainedfrom a zeroth order interpolated LDA data set. The systematic error, sometimes referred toas the 'particle-rate' �lter, is removed using an FIR �lter parameterized using the mean par-ticle rate. Independent from this, a procedure for estimating the measurement system noiseis introduced and applied to the estimated spectra. The spectral estimation is performed inthe domain of the autocorrelation function and assumes no further process parameters. Thenew technique is illustrated using measured LDA data with direct comparison to simultaneouslyacquired hot-wire data.1 IntroductionSpectral estimation from laser Doppler anemometer (LDA) velocity data requires special consid-eration due to the randomly sampled nature of the signal in time. One commonly used approachis signal reconstruction, or interpolation, in which a data set with time equidistant samples isobtained through resampling of the interpolated signal. However the expectation of classicalpower spectral density (PSD) estimators may be strongly biased with systematic errors, whichcalls for a note of caution [6]. Among other e�ects, conventional interpolation techniques leadto an increased time correlation, equivalent to a low-pass �lter. This \particle-rate" �lter e�ecthas been well studied for the case of sample-and-hold (S+H) reconstruction, i.e. zero order in-terpolation, and leads to PSD estimates which are valid only up to a frequency of f < _n=2�,where _n is the mean particle rate [1]. For sparsely seeded 
ows this is a severe restriction andfurthermore, even the valid spectral range may su�er from aliasing errors if power above thislimit exists in the original data set. The fact that the �lter characteristic introduced by the inter-polation and resampling resembles closely typical turbulence spectra, only increases the dangerof misinterpretation. More speci�cally, within the inertial subrange, the rate of dissipation canbe inferred from the power spectral density [3]. A poorly estimated spectrum will therefore leaddirectly to improperly estimated dissipation rates.In previous work the authors have shown that it is possible to estimate the systematic �ltere�ect for one-point interpolation schemes, meaning schemes which use only the last valid datasample for interpolation within the current time interval. This would include the widely usedS+H interpolation or the single exponential interpolation [5]. Once estimated, this bias can beremoved from the spectral estimate, essentially corresponding to applying an FIR �lter. Thispossibility exists due to the linear character of the particle-rate �lter, which allows a matrixinversion. The remaining limit of power estimation resolution is dictated by the measurementsystem noise, which can be assumed to be white [4]. The noise contribution to the spectrumremains unchanged by applying an FIR �lter. Some techniques, using a Kalman �lter have been



proposed to estimate and correct for this noise component, however these have always assumeda high particle rate and have not addressed the particle-rate �lter or interpolation error [2, 8].In the following work the error introduced by interpolation and the noise error are consideredindependently and removed from the PSD estimate. The technique for removing e�ects of the'particle-rate' �lter is brie
y reviewed and some examples of its performance using LDA datataken from a free jet are presented. A new method of removing the noise component is thenintroduced and discussed in detail. Measurement data are used to illustrate the e�ectiveness ofthe method.2 Correction for the Interpolation ErrorThe correction for the interpolation error introduced in [7] is applicable to LDA data sets ob-tained through one-point reconstruction and resampling, the most common being the sampleand hold method. In the following work the sample and hold signal is resampled at regular timeintervals, from which the autocorrelation function is computed.Rr;k = Rr(�k) = Rr(k=fa) = J�KXj=0 ur;jur;j+k k = 0; : : : ; K � 1 (1)where the subscript r stands for resampled and J is the largest integer number in the observationtime. The power spectral density is given asSr;j = Sr(fj) = Sr � jfa2K � 1�= 1fa 2K�2Xk=0 Rr;ke�2�ijk=(2K�1) j = 0; : : : ; 2K � 2 (2)The result of this procedure is illustrated in �gure 1 for three measured LDA data sets, witha comparison to hot wire (HW) measurements performed without seed particles. The data weretaken from an axisymmetric free jet at a position of x=D = 6, z=D = 3 (D = 5 cm). Thejet Reynolds number based on the jet outlet diameter and bulk velocity was 40 000, with anintegral time scale at the measurement position of 2 ms. The mean velocity at this positionwas 8:5 ms�1 with turbulence level of 24 %. The dissipation rate, estimated as � � q3=l, was150 m2 s�3 and the Kolmogorov length scale was estimated using � = (�3=�)1=4 to be 65 �m.The particle rate of the LDA data sets could be controlled through the particle seeding and was7 100 Hz for �gure 1 (a), 8 200 Hz for �gure 1 (b) and 300 Hz for �gure 1 (c). Furthermore thenoise level could be increased substantially by misaligning the receiving optics and increasingthe ampli�er gain, as was done for the data processed in �gure 1 (b). All data sets consisted of100 000 samples.In �gure 1 (a) the spectral estimate shows good agreement with the hot-wire result (dashedline) up to a frequency of appoximately 1:5 kHz, where the hot-wire result indicates the end ofthe inertial subrange. The expected �lter cut-o� frequency in this case is _n=2� � 1:1 kHz, whichexplains the deviation of the two spectra at higher frequencies. The LDA result is dominatedby the �lter roll-o�. In �gure 1 (b) the spectral estimate is further contaminated by the addednoise which is apparent already at frequencies above 200 Hz. Otherwise, the high frequencyportion of the spectrum again exhibits a typical �lter characteristic. Finally, in �gure 1 (c),the consequence of a much lower particle rate becomes apparent. The �lter cut-o� frequency is_n=2� � 50 Hz, which means that almost the entire estimated spectrum has a systematic errorand no longer resolves even a portion of the inertial subrange. For reference, a �tted line withslope �5=3 has been added to �gure 1 (c) and corresponds closely to the hot-wire spectrum.Using the expression �(f) = K�2=3(2�f=u)�5=3 with K = 0:5 given by [3], the dissipation rate
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�Figure 1: Power spectral density of LDA data sets without re�nement, with re�nement and withnoise suppressionhas been estimated to be 160 m2 s�3, which agrees remarkably well with the estimate givenabove.The correction for the interpolation error begins with an expression for the autocorrelationfunction obtained from the interpolated and resampled data set. The derivation follows closelythat of [1] and is given by [7]. For the case of the sample-and-hold interpolation, the followingexpression for the expectation is obtained.EfRr;kg = Ruu;0 0X�=�1 �1� e� _n� e� _n(k��) + 1X�=1Ruu;� min(k;�)X�=1 �1� e� _n�2 e� _n(k+��2�)= e� _nk8<:Ruu;0 + �e _n � 1�21� e2 _n 1X�=1 e� _n� �1� e2 _nmin(k;�)�Ruu;�9=; (3)The function Ruu;k represents the true ACF of a continuous velocity signal, including the systemnoise. Equation (3) is a linear system which can be written asEfRr;kg = FRuu;k (4)



and inverted to yield a modi�ed ACF, denoted by the subscript mRm;k = F�1Rr;k (5)which is found to yield a non-biased estimate of Ruu;k [7].The function Rm;k is a one-sided ACF with one sample less than Rr;k, because each valueof Rm;k depends on the subsequent value Rr;k+1. The values of Rm;k are mirrored about themaximum coe�cient to yield a symmetric function and the PSD is obtained throughSm;j = Sm(fj) = Sm � jfa2K � 3�= 1fa 2K�4Xk=0 Rm;ke�2�ijk=(2K�3) j = 0; : : : ; 2K � 4: (6)Results of this procedure are also shown in �gure 1 for the three experimental data sets.There are two prominent di�erences between the original spectra and those with re�nement,both arising from the removal of the interpolation error. The �rst is, that the agreement betweenthe LDA result and the HWA result extends to higher frequencies, especially apparent for thedata taken at a low particle rate (�gure 1 c), but also detectable for the case of a high particlerate (�gure 1 a). The spectral estimate in �gure 1 (c) appears to be reliable up to approximately1 000 Hz, which is a twentyfold extension beyond the particle-rate �lter cut-o� frequency of50 Hz applied in �gure 1 (c). The second di�erence lies in an apparent increase of estimatorvariability at higher frequencies. This is deceptive, in fact the variability has not increased, butin the previous estimates of �gure 1 the estimate at high frequencies was always dominated bythe particle-rate �lter. Using these estimates, which are now interpolation error free, one canalso draw the conclusion that the estimator variance increases faster with decreasing particlerate than it decreases with increasing measurement duration.3 Noise SuppressionNoise suppression has been attempted previously by [2] and [8] through the use of a Kalman�lter. In this approach, a noise estimation was performed with respect to a prescribed modelassuming that the noise component was spectrally white. However no account was made of theinterpolation error. For this reason the technique is restricted to data sets with high particlerates, at which the interpolation error vanishes.In the following approach the noise is also assumed to be uncorrelated, or white, i.e.Rm;k = ( Rt;0+ �2n for k = 0Rt;k for k = 1; : : : ; K � 2 (7)Sm;j = St;j + �2n=fa j = 0; : : : ; 2K � 4 (8)where fa is the resample frequency, Rm and Sm are the ACF and the PSD respectively ofthe noise-containing signal and Rt and St are the same for the noise-free signal, i.e. the ACFand spectrum of the turbulent velocity 
uctuations. Equation (8) indicates that the noise isadditive to the spectrum, constant over all frequencies. If the noise is dominating, the spectrumis therefore constant.The essence of noise suppression is to estimate �2n and subtract this from the individual spec-tral coe�cients. A further assumption made in estimating the noise level is that the turbulentvelocity 
uctuations are not spectrally white over any frequency range. Thus, the distinguishingfactor between signal and noise in the spectrum, is the 
atness in frequency. A procedure is nowproposed which operates on that portion of spectrum which is constant. After subtracting the



�Figure 2: Scatter function � as a function of postulated noise level �2nestimated noise level �2n, the high frequency portion of the spectrum is not expected to remainconstant, a feature which will be exploited to automate the estimation procedure.Such an algorithm requires some speci�cation of the portion of the spectrum to be considered,or alternatively, the entire spectrum can be used with a monotonic weighting which emphasizesthe small amplitudes at high frequencies and considers with less weight the high amplitudes atlow frequencies. Several weight functions ful�ll these demands, however in the present workthe natural logarithm of the absolute magnitude of the PSD has been chosen. This functionincreases sharply when the PSD amplitude approaches zero and furthermore can handle negativeamplitudes, which invariably arise due to the variance of the spectral estimator and the resultingscatter above and below the true noise level. The following function is therefore considered.ln jSt;j j = ln �����Sm;j � �2nfa ����� j = 1; : : : ; 2K � 4 (9)The optimal choice of �2n will lead to a maximum scatter or variance over all the values of thefunction given in Eq. (9). Therefore the estimation procedure consists of minimizing the scatterfunction � = 264 12K � 5 2K�4Xj=1j 6=�  ln �����Sm;j � �2nfa �����!2 �0B@ 12K � 5 2K�4Xj=1j 6=� ln �����Sm;j � �2nfa �����1CA2375�1 (10)with � = arg(�����Sm;j � �2nfa ����� = min)through the choice of �2n. Note that the lowest value of the function given in Eq. (10), designatedby the index �, is not used, to avoid any singularities in �. Furthermore Sm;0 is not considered,since any bias error in the mean value could propagate disproportionally into the new spectralestimate.Figure 2 illustrates the quantity � as a function of �2n for the three data sets used in �gure 1.In the case of high particle rates a distinct minimum of � is observed. No such distinct minimumis seen in the case of low particle rate, indicating that the variance of the PSD estimate exceedsthe noise level and no reliable estimate of �2n can be performed.
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Figure 3: Search by generation branchingThe noise estimation procedure reverts at this stage to a search by branching as describedby the following. Initially � is calculated at equal spaced values of �2n between zero and Rm;0(maximum possible value). A new generation of smaller spaced �2n values is computed about themost promising values of the last generation, and so on, as indicated schematically in �gure 3.In the examples given in �gure 2, 100 initial �2n values were used. At each of the 10 valuescorresponding to the lowest � values, another 10 more densely spaced values of �2n were chosen,continuing for a total of 10 generations. At this stage the �2n value corresponding to a minimumof � was subtracted from the PSD amplitudes at all frequencies.The resulting PSD functions are superimposed in �gure 1, shifted -4 decades from the originalestimations. In the case of a high particle rate (�gures 1 a and 1 b) the region of constant PSDhas been completely eliminated. For the low noise data set the transition of the spectrum fromthe inertial subrange to the dissipative range has now been resolved. At the higher noise level(�gure 1 b) no remnants of noise are left, leaving only the spectral 
uctuations attributable tothe estimator variance. The spectral estimate in �gure 1 (a) and 1 (b) appear to be reliable upto frequencies of about 3 to 4 kHz, which is a fourfold increase beyond the particle-rate �ltercut-o�. At the low particle rate (�gure 1 c) the estimator variance is dominant, as was previouslyremarked, so that the noise removal cannot be recognized.4 Further ExamplesTwo further examples will be shown to underline the advantage of the new estimator. The �rstof these is a set of measurements taken from a free jet 
ow, in which very long data sets wererecorded to illustrate the di�erence between noise and estimator variability. The mean datarate was approximately 4 000 Hz and two data sets consisting of 16 000 samples and 960 000samples respectively were recorded. The corresoponding results of spectral estimation, with andwithout noise suppression are presented in the two diagrams of �gure 4. In �gure 4 (b) it is notimmediately apparent whether the 
attening of the spectrum taken from the short data set athigher frequencies is due to noise or whether this is due to a high variability of the estimateand appears 
at due to the logarithmic presentation. The estimate in �gure 4 (b), taken over16 times the number of samples (long data set), clearly shows that the noise had been removedand that indeed, only the estimator variability was hindering a reliable spectral interpretationfor the short data set.The second example involves LDA data taken from a steady 
ow rig used to study valve inlet
ows for internal combustion engines. For the present purpose two data sets with a particle rateof 300 Hz and 2 kHz respectively were used. The two data sets had the same number of velocityvalues. The data acquired at a high particle rate were processed using the conventional sample-and-hold reconstruction technique and the result was used as a reference spectrum which shouldbe reliable up to approximately 2 000=2� � 300 Hz. The second data set with a low particle ratewas then processed with and without the re�nement and noise suppression step. The resample



frequency was chosen to be 2 kHz.The results are shown in �gure 5. The reference spectrum exhibits a strong periodicityat 38 Hz associated with an unsteady swirl component and a second, weaker peak at about90 Hz. The estimation at the particle rate of 300 Hz and without re�nement (�gure 5 b) missesthis second peak completely, since the particle-rate �lter has a cuto� frequency already at300=2� � 50 Hz. Also the \step noise" of this estimate [1] is seen clearly as an increased spectrallevel at low frequencies. On the other hand the new, re�ned estimate recovers the detail of thesecond peak even at the low particle rate of 300 Hz and agrees well with the reference spectrumup to a frequency of about 150 Hz. Above this value the variance of the estimator masks thetrue spectrum. Nonetheless, this represents a three fold increase in the frequency to which areliable spectral estimate can be achieved.5 Closing remarksA spectral estimator for LDA data has been introduced which removes the interpolation errorand the measurement system noise. The resulting spectrum is bias-free but displays a variancewhich increases with lower particle rates and increasing system noise. However this variance canbe lowered to arbitrary levels by increasing the number of data samples. Thus this techniqueis also suitable for reliable estimation of power spectral density even at low particle rates. Inthis sense, the estimate is also alias-free and can in principle be extended to arbitrarily highfrequencies, regardless of the mean particle rate.AcknowledgmentsThe �nancial support of the Deutsche Forschungsgemeinschaft (DFG) through grants Mu 1117/1and Tr 194/9 is gratefully acknowledged.References[1] Adrian, R. J. & Yao, C. S. 1987 Power Spectra of Fluid Velocities Measured by LaserDoppler Velocimetry. Exp. in Fluids 5, 17{28.[2] Benedict, L. H. & Gould, R. D. 1995 Experience Using Kalman Reconstruction forEnhanced Power Spectrum Estimates. In Sixth Intl Conf. on Laser Anemometry (ed. T. T.Huang; J. Turner; M. Kawahashi & M. V. Otugen). ASME, FED-Vol. 228, 1{7.[3] Bradshaw, P. 1971 An Introduction to Turbulence and its Measurement. Pergamon Ox-ford.[4] George, W. K. & Lumley, J. L. 1973 The laser Doppler velocimeter and its applicationto the measurement of turbulence. J. Fluid Mech. 60, 321{362.[5] H�st-Madsen, A. 1994 A New Method for Estimation of Turbulence Spectra for LaserDoppler Anemometry. In Seventh Intl Symp. on Appl. of Laser Techn. to Fluid MechanicsLisbon, Portugal, paper 11.1.[6] M�uller, E.; Nobach, H. & Tropea, C. 1994 LDA Signal Reconstruction: Applicationto Moment and Spectral Estimation. In Seventh Intl Symp. on Appl. of Laser Techn. toFluid Mechanics Lisbon, Portugal, paper 23.2.[7] Nobach, H.; M�uller, E. & Tropea, C. 1996 Re�ned Reconstruction Techniques forLDA Analysis. In Eighth Intl Symp. on Appl. of Laser Techn. to Fluid Mechanics Lisbon,Portugal, paper 36.2.[8] Maanen, H. van & Tulleken, H. 1994 Application of Kalman Reconstruction to Laser-Doppler Anemometry Data for Estimation of Turbulent Velocity Fluctuations. In SeventhIntl Symp. on Appl. of Laser Techn. to Fluid Mechanics Lisbon, Portugal, paper 23.1.



��Figure 4: Example spectra (a) without and (b) with noise suppression
��
�Figure 5: Example spectra taken from an unsteady swirl 
ow: (a) conventional S+H estimationat high particle rate; (b) conventional S+H estimate at low particle rate; (c) new estimation atlow particle rate.


