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Abstract

A non-biased estimator of power spectral density (PSD) has been introduced for data obtained
from a zeroth order interpolated LDA data set. The systematic error, sometimes referred to
as the ’particle-rate’ filter, is removed using an FIR filter parameterized using the mean par-
ticle rate. Independent from this, a procedure for estimating the measurement system noise
is introduced and applied to the estimated spectra. The spectral estimation is performed in
the domain of the autocorrelation function and assumes no further process parameters. The
new technique is illustrated using measured LDA data with direct comparison to simultaneously
acquired hot-wire data.

1 Introduction

Spectral estimation from laser Doppler anemometer (LDA) velocity data requires special consid-
eration due to the randomly sampled nature of the signal in time. One commonly used approach
is signal reconstruction, or interpolation, in which a data set with time equidistant samples is
obtained through resampling of the interpolated signal. However the expectation of classical
power spectral density (PSD) estimators may be strongly biased with systematic errors, which
calls for a note of caution [6]. Among other effects, conventional interpolation techniques lead
to an increased time correlation, equivalent to a low-pass filter. This “particle-rate” filter effect
has been well studied for the case of sample-and-hold (S+H) reconstruction, i.e. zero order in-
terpolation, and leads to PSD estimates which are valid only up to a frequency of f < n/2x,
where 7 is the mean particle rate [1]. For sparsely seeded flows this is a severe restriction and
furthermore, even the valid spectral range may suffer from aliasing errors if power above this
limit exists in the original data set. The fact that the filter characteristic introduced by the inter-
polation and resampling resembles closely typical turbulence spectra, only increases the danger
of misinterpretation. More specifically, within the inertial subrange, the rate of dissipation can
be inferred from the power spectral density [3]. A poorly estimated spectrum will therefore lead
directly to improperly estimated dissipation rates.

In previous work the authors have shown that it is possible to estimate the systematic filter
effect for one-point interpolation schemes, meaning schemes which use only the last valid data
sample for interpolation within the current time interval. This would include the widely used
S+H interpolation or the single exponential interpolation [5]. Once estimated, this bias can be
removed from the spectral estimate, essentially corresponding to applying an FIR filter. This
possibility exists due to the linear character of the particle-rate filter, which allows a matrix
inversion. The remaining limit of power estimation resolution is dictated by the measurement
system noise, which can be assumed to be white [4]. The noise contribution to the spectrum
remains unchanged by applying an FIR filter. Some techniques, using a Kalman filter have been



proposed to estimate and correct for this noise component, however these have always assumed
a high particle rate and have not addressed the particle-rate filter or interpolation error [2, 8].

In the following work the error introduced by interpolation and the noise error are considered
independently and removed from the PSD estimate. The technique for removing effects of the
"particle-rate’ filter is briefly reviewed and some examples of its performance using LDA data
taken from a free jet are presented. A new method of removing the noise component is then
introduced and discussed in detail. Measurement data are used to illustrate the effectiveness of
the method.

2 Correction for the Interpolation Error

The correction for the interpolation error introduced in [7] is applicable to LDA data sets ob-
tained through one-point reconstruction and resampling, the most common being the sample
and hold method. In the following work the sample and hold signal is resampled at regular time
intervals, from which the autocorrelation function is computed.
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where the subscript r stands for resampled and J is the largest integer number in the observation
time. The power spectral density is given as
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The result of this procedure is illustrated in figure 1 for three measured LDA data sets, with
a comparison to hot wire (HW) measurements performed without seed particles. The data were
taken from an axisymmetric free jet at a position of /D = 6, z/D = 3 (D = 5cm). The
jet Reynolds number based on the jet outlet diameter and bulk velocity was 40000, with an
integral time scale at the measurement position of 2 ms. The mean velocity at this position
was 8.5 ms~! with turbulence level of 24 %. The dissipation rate, estimated as ¢ =~ ¢°/I, was
150 m?s~3 and the Kolmogorov length scale was estimated using 1 = (#*/€)'/* to be 65 um.
The particle rate of the LDA data sets could be controlled through the particle seeding and was
7100 Hz for figure 1 (a), 8200 Hz for figure 1 (b) and 300 Hz for figure 1 (¢). Furthermore the
noise level could be increased substantially by misaligning the receiving optics and increasing
the amplifier gain, as was done for the data processed in figure 1 (b). All data sets consisted of
100 000 samples.

In figure 1 (a) the spectral estimate shows good agreement with the hot-wire result (dashed
line) up to a frequency of appoximately 1.5 kHz, where the hot-wire result indicates the end of
the inertial subrange. The expected filter cut-off frequency in this case is 7n/27 = 1.1 kHz, which
explains the deviation of the two spectra at higher frequencies. The LDA result is dominated
by the filter roll-off. In figure 1(b) the spectral estimate is further contaminated by the added
noise which is apparent already at frequencies above 200 Hz. Otherwise, the high frequency
portion of the spectrum again exhibits a typical filter characteristic. Finally, in figure 1 (¢),
the consequence of a much lower particle rate becomes apparent. The filter cut-off frequency is
1/27 & 50 Hz, which means that almost the entire estimated spectrum has a systematic error
and no longer resolves even a portion of the inertial subrange. For reference, a fitted line with
slope —5/3 has been added to figure 1(c¢) and corresponds closely to the hot-wire spectrum.
Using the expression ¢(f) = Ke*/3(2r f/u)~5/ with K = 0.5 given by [3], the dissipation rate
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has been estimated to be 160 m?s™>, which agrees remarkably well with the estimate given

above.

The correction for the interpolation error begins with an expression for the autocorrelation
function obtained from the interpolated and resampled data set. The derivation follows closely
that of [1] and is given by [7]. For the case of the sample-and-hold interpolation, the following
expression for the expectation is obtained.
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The function Ry, represents the true ACE of a continuous velocity signal, including the system
noise. Equation (3) is a linear system which can be written as

E{Rr;k} = FRuu,k

(4)



and inverted to yield a modified ACF, denoted by the subscript m
Rm;k = F_er;k (5)

which is found to yield a non-biased estimate of Ry, [7].

The function R, is a one-sided ACF with one sample less than R,.;, because each value
of R, depends on the subsequent value R,.41. The values of R, are mirrored about the
maximum coeflicient to yield a symmetric function and the PSD is obtained through
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Results of this procedure are also shown in figure 1 for the three experimental data sets.
There are two prominent differences between the original spectra and those with refinement,
both arising from the removal of the interpolation error. The first is, that the agreement between
the LDA result and the HWA result extends to higher frequencies, especially apparent for the
data taken at a low particle rate (figure 1 ¢), but also detectable for the case of a high particle
rate (figure 1 a). The spectral estimate in figure 1 (¢) appears to be reliable up to approximately
1000 Hz, which is a twentyfold extension beyond the particle-rate filter cut-off frequency of
50 Hz applied in figure 1(¢). The second difference lies in an apparent increase of estimator
variability at higher frequencies. This is deceptive, in fact the variability has not increased, but
in the previous estimates of figure 1 the estimate at high frequencies was always dominated by
the particle-rate filter. Using these estimates, which are now interpolation error free, one can
also draw the conclusion that the estimator variance increases faster with decreasing particle
rate than it decreases with increasing measurement duration.

3 Noise Suppression

Noise suppression has been attempted previously by [2] and [8] through the use of a Kalman
filter. In this approach, a noise estimation was performed with respect to a prescribed model
assuming that the noise component was spectrally white. However no account was made of the
interpolation error. For this reason the technique is restricted to data sets with high particle
rates, at which the interpolation error vanishes.

In the following approach the noise is also assumed to be uncorrelated, or white, i.e.
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where f, is the resample frequency, R, and S,, are the ACF and the PSD respectively of
the noise-containing signal and R; and S; are the same for the noise-free signal, i.e. the ACF
and spectrum of the turbulent velocity fluctuations. Equation (8) indicates that the noise is
additive to the spectrum, constant over all frequencies. If the noise is dominating, the spectrum
is therefore constant.

The essence of noise suppression is to estimate o2 and subtract this from the individual spec-
tral coefficients. A further assumption made in estimating the noise level is that the turbulent
velocity fluctuations are not spectrally white over any frequency range. Thus, the distinguishing
factor between signal and noise in the spectrum, is the flatness in frequency. A procedure is now
proposed which operates on that portion of spectrum which is constant. After subtracting the
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Figure 2: Scatter function § as a function of postulated noise level o2

estimated noise level o2, the high frequency portion of the spectrum is not expected to remain
constant, a feature which will be exploited to automate the estimation procedure.

Such an algorithm requires some specification of the portion of the spectrum to be considered,
or alternatively, the entire spectrum can be used with a monotonic weighting which emphasizes
the small amplitudes at high frequencies and considers with less weight the high amplitudes at
low frequencies. Several weight functions fulfill these demands, however in the present work
the natural logarithm of the absolute magnitude of the PSD has been chosen. This function
increases sharply when the PSD amplitude approaches zero and furthermore can handle negative
amplitudes, which invariably arise due to the variance of the spectral estimator and the resulting
scatter above and below the true noise level. The following function is therefore considered.
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The optimal choice of o2 will lead to a maximum scatter or variance over all the values of the
function given in Eq. (9). Therefore the estimation procedure consists of minimizing the scatter
function
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through the choice of o2. Note that the lowest value of the function given in Eq. (10), designated
by the index (, is not used, to avoid any singularities in 6. Furthermore 5,y is not considered,
since any bias error in the mean value could propagate disproportionally into the new spectral
estimate.
Figure 2 illustrates the quantity § as a function of o2 for the three data sets used in figure 1.
In the case of high particle rates a distinct minimum of § is observed. No such distinct minimum
is seen in the case of low particle rate, indicating that the variance of the PSD estimate exceeds
the noise level and no reliable estimate of ¢2 can be performed.
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The noise estimation procedure reverts at this stage to a search by branching as described
by the following. Initially & is calculated at equal spaced values of ¢2 between zero and Ry,
(maximum possible value). A new generation of smaller spaced o2 values is computed about the
most promising values of the last generation, and so on, as indicated schematically in figure 3.

In the examples given in figure 2, 100 initial o2 values were used. At each of the 10 values
corresponding to the lowest § values, another 10 more densely spaced values of o2 were chosen,
continuing for a total of 10 generations. At this stage the o2 value corresponding to a minimum
of § was subtracted from the PSD amplitudes at all frequencies.

The resulting PSD functions are superimposed in figure 1, shifted -4 decades from the original
estimations. In the case of a high particle rate (figures 1« and 1) the region of constant PSD
has been completely eliminated. For the low noise data set the transition of the spectrum from
the inertial subrange to the dissipative range has now been resolved. At the higher noise level
(figure 1b) no remnants of noise are left, leaving only the spectral fluctuations attributable to
the estimator variance. The spectral estimate in figure 1 (a) and 1(b) appear to be reliable up
to frequencies of about 3 to 4 kHz, which is a fourfold increase beyond the particle-rate filter
cut-off. At the low particle rate (figure 1 ¢) the estimator variance is dominant, as was previously
remarked, so that the noise removal cannot be recognized.

4 Further Examples

Two further examples will be shown to underline the advantage of the new estimator. The first
of these is a set of measurements taken from a free jet flow, in which very long data sets were
recorded to illustrate the difference between noise and estimator variability. The mean data
rate was approximately 4 000 Hz and two data sets consisting of 16 000 samples and 960000
samples respectively were recorded. The corresoponding results of spectral estimation, with and
without noise suppression are presented in the two diagrams of figure 4. In figure 4 () it is not
immediately apparent whether the flattening of the spectrum taken from the short data set at
higher frequencies is due to noise or whether this is due to a high variability of the estimate
and appears flat due to the logarithmic presentation. The estimate in figure 4 (b), taken over
16 times the number of samples (long data set), clearly shows that the noise had been removed
and that indeed, only the estimator variability was hindering a reliable spectral interpretation
for the short data set.

The second example involves LDA data taken from a steady flow rig used to study valve inlet
flows for internal combustion engines. For the present purpose two data sets with a particle rate
of 300 Hz and 2 kHz respectively were used. The two data sets had the same number of velocity
values. The data acquired at a high particle rate were processed using the conventional sample-
and-hold reconstruction technique and the result was used as a reference spectrum which should
be reliable up to approximately 2000/27 ~ 300 Hz. The second data set with a low particle rate
was then processed with and without the refinement and noise suppression step. The resample



frequency was chosen to be 2 kHz.

The results are shown in figure 5. The reference spectrum exhibits a strong periodicity
at 38 Hz associated with an unsteady swirl component and a second, weaker peak at about
90 Hz. The estimation at the particle rate of 300 Hz and without refinement (figure 5 b) misses
this second peak completely, since the particle-rate filter has a cutoff frequency already at
300/27 =~ 50 Hz. Also the “step noise” of this estimate [1] is seen clearly as an increased spectral
level at low frequencies. On the other hand the new, refined estimate recovers the detail of the
second peak even at the low particle rate of 300 Hz and agrees well with the reference spectrum
up to a frequency of about 150 Hz. Above this value the variance of the estimator masks the
true spectrum. Nonetheless, this represents a three fold increase in the frequency to which a
reliable spectral estimate can be achieved.

5 Closing remarks

A spectral estimator for LDA data has been introduced which removes the interpolation error
and the measurement system noise. The resulting spectrum is bias-free but displays a variance
which increases with lower particle rates and increasing system noise. However this variance can
be lowered to arbitrary levels by increasing the number of data samples. Thus this technique
is also suitable for reliable estimation of power spectral density even at low particle rates. In
this sense, the estimate is also alias-free and can in principle be extended to arbitrarily high
frequencies, regardless of the mean particle rate.
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Figure 4: Example spectra (a) without and (b) with noise suppression
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Figure 5: Example spectra taken from an unsteady swirl flow: (a) conventional S+H estimation
at high particle rate; (b) conventional S+H estimate at low particle rate; (¢) new estimation at

low particle rate.




