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ABSTRACT

The estimation of spectra from LDA data using model
parameter estimation is examined. An ARMA (Autoregres-
sive Moving Average) process is used to model the flow ve-
locity fluctuations and the model parameters are estimated
through the autocorrelation function. This new technique
is described in detail and its performance, particularily for
low data densities is examined using simulations and exper-
iments. The estimator is shown to be well suited, not only
for low data densities, but also for short record lengths, as
would be expected in some transient flowfields.

INTRODUCTION

The randomness of particle arrivals in the measurement
volume of a laser Doppler anemometer (LDA) must be con-
sidered when computing statistical quantities of the veloc-
ity field. This is especially true for the estimation of the
power spectral density, or spectrum, since the arrival times
of particles will directly influence the frequency of velocity
fluctuations which can be resolved. A considerable number
of spectral estimators for LDA data have been suggested in
the past, several of which will be described below. Generally
speaking however, most estimators perform well if the data
density, i.e. the mean number of particles per integral flow
time scale, is sufficiently high. The challenge to perform
well is greater if the data density decreases and even more
so, 1f at the same time, the data set is of short duration, for
example in the case of transient flowfields such as in engines.
This is precisely the situation which motivated the present
work, which introduces a new LDA spectral estimator based
on model parameter estimation.

The large number of possible spectral estimators can be
interpreted according to the broad classification shown in

Fig. 1. The non-parametric methods generally assume no
pre-knowledge of the velocity signal, and a prescribed com-
putational procedure is followed, independent of the input
data. Model based approaches assume a particular model or
family of models for the signal or one of its derivative quan-
tities, and the model parameters are adjusted to achieve a
minimum deviation from the target function. With very
few exceptions (Veynante and Candel, 1988a, van Maa-
nen, 1994), previously proposed estimators have been non-
parametric, presumably to avoid the necessity of having a
priori knowledge about the signal.

Of the non-parametric approaches, both the direct estima-
tion and signal reconstruction have been widely used and,
for most estimators, have also been well analysed with re-
spect to performance. The direct estimation can be per-
formed using the discrete Fourier transformation (DFT), as
proposed initially by Gastor and Roberts (1975) and dis-
cussed in more detail in subsequent publications (Gastor
and Roberts, 1977, Roberts et al., 1980). Alternatively,
the correlation function can first be estimated, eg. using
a slot correlation, followed by a Fourier transform (Bell,
1986, Mayo, 1975, Scott 1974). The direct estimation as
described in Roberts et al. (1980), will also be used in the
present study for comparison purposes. The method has
been slightly modified in that the individual velocity sam-
ples have been weighted with their residence time, as out-
lined in Miller et al. (1994). This has shown to yield a
better estimate of the total power, especially at low data
densities (Nobach, 1993).

Signal reconstruction with resampling at equidistant time
intervals, as a means of spectral estimation, has received
increased attention in recent years, although the zero order
reconstruction — sample and hold (S4+H) — dates back to



the digital sampling of the analog output of tracker proces-
sors. In the meantime, the S+H reconstruction has been
well analysed in terms of spectral content (Adrian and Yao,
1987) and in terms of moments (Edwards and Jensen, 1983).
More complex reconstruction schemes have been proposed,
including higher order polynomials, projection onto convex
sets (POCS) (Lee and Sung, 1992), fractal reconstruction
(Chao and Leu, 1992) and the so-called Shannon reconstruc-
tion (Veynante and Candel, 1988b, Clark et al., 1985). A
recent examination of different schemes has led however, to
the conclusion that none of these techniques can be consid-
ered universally superior to either the direct estimation or
the S4+H reconstruction (Miiller et al., 1994).

Perhaps the most promising reconstruction approach to
data has been presented as a single exponential interpolation
(Hgst-Madsen, 1994), in which the signal between samples
can be described as

X'(t)=e X (17) (1)

where £~ 1s the arrival time of the previous sample and b is
a decay constant to be prescribed. A value of b=0 leads to
the S+H reconstruction. Letting b tend to infinity, while
at the same time scaling with b, represents the direct esti-
mation. Excellent results were obtained using for the value
of b the inverse of the integral time scale and thus, a decay-
ing function between samples. Evaluation of the estimator
was based on the interpolation error, defined as the added
standard deviation of the spectrum. On this basis, the sin-
gle exponential interpolation achieves at low data densities
comparable results to the direct estimation and, at high data
densities, results comparable to the S+H and is thus shown
to be an appropriate estimator for the entire range. Fur-
ther details of this technique can be found in Hgst-Madsen
(1994).

Despite the very good performance of the single exponen-
tial interpolation, it is reasonable to assume that improve-
ments can be achieved if a priori information concerning
the signal is available and can be entered into the estima-
tion process. The parametric estimator introduced in the
following section allows this. Its performance will however,
clearly depend on how good the a priori assumptions match
the physical process.

DESCRIPTION OF THE ESTIMATION PROCEDURE

Process Model

The estimation procedure is based on matching the mea-
sured velocity information to an ARMA (Autoregressive
Moving Average) process, as described in its most general
form for a time sequence as (Box and Jenkins, 1976):

2k = ¢1Zk_1 +.. .—|—¢pzk_p—|—ak —Giap_1—... _ank—q (2)

where p and ¢ are the orders of the AR and MA processes
and a 1s the added white noise. In the following study, we
will restrict ourselves to the AR process

5k = $12k—1+ .. + PpZk—p + ak (3)

with the finite set of weight parameters ¢1,...,¢,. The
variance of the process is given by
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using the autocorrelation function
Ry =01 Re—1 +p2Re—o0+ ...+ 0pBRi—p k>p (6)
The spectrum of the AR process is given by
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The integral time scale of the process is defined as
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Error Function

The basic procedure to be followed is shown schematically
in Fig. 2. The input velocity information is compared to the
process model on the basis of a target function, such as the
autocorrelation function or the spectrum. The deviations
are evaluated as an error function, which is used to alter the
process model parameters to iteratively achieve minimum
deviation. The resultant parameter set then represents the
best match of the model to the physical process. Further
iterations can be performed to optimize the model order.
Also initial statistics of the velocity information, such as
mean or variance, can be used as preset and fixed values for
the process model.

In the present case, a function related to the autocorrela-
tion function has been used as a target function. This func-
tion 1s designated as gi. For the velocity series, this function
is computed using a slotting technique, with N, slots, each
of duration A7, typically 1-5% of the model integral time
scale. In computing the target function gz however, the sum
of the cross products accumulated in each slot is not divided
by the number of products used.
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Furthermore, in the first slot, no self-products are included.
The error function is then computed as

N
€ = (ReNy — gi)? (10)
k=1

where Ny is the number of products in Eq. (9) contributing
to the function gx. Thus, the square error in slots with more
products contribute more to the total error, resulting in a
linear weighting of €? with the number of products in the
slot. Note that this is not equivalent to forming the error
function

&2 = Z(Rk — gk/Nk)2 (11)

since this estimate will be strongly biased when Ny is small,
as is mostly the case. Eq. (10) also illustrates why the
self products are neglected in the first slot. Otherwise they
would contribute disproportionately to the error.

Iteration Algorithm

The goal is to minimize € by choosing an appropriate
model parameter set. This is straightforward for a model of
first order, in which only the parameter ¢; must be found.
For a second order model, local minima can appear, depend-
ing on the step width used for iteration. Therefore a special
search strategy has been developed, applicable for all model
orders. The method will be illustrated for order 2.

The search begins by computing €2 for the initial weight
parameters ¢1 = ¢2 = 0 (white noise). Using an initial step
size of A¢y = Aps = 0.5, the change of €? is computed for
the eight vector directions (1,0), (1,1), ... (1,-1) as indicated
in Fig. 3. The direction with the largest decrease in ¢? is
chosen and the search continues from this point with the
same step size, again searching in eight directions. This
continues until a minimum in €? is found, upon which the
step size is halved. The search is terminated when the step
size reaches 107'2. Note that the weight parameters are
valid only for the chosen slot width Ar.

Fig. 4 illustrates a few selected iso-curves of € in the
¢1 — @2 plane, computed using a very small step size grid.
The correct weight parameters are ¢1 = 0.7 and ¢» = 0.2.
At an intermediate iteration, a local minimum is seen to lie
a considerable distance away from the correct value. Note
that this search procedure can be extended easily to higher
orders. The number of local search direction vectors in-
creases correspondingly.

Spectral Estimate

The iteration algorithm is carried out for each block of
data, yielding the optimized weight parameters for that
block. This parameter set can then be used to form a con-
tinuous spectrum according to Eq. (7). The final spectral
estimate is taken as the average spectrum of N blocks of
data. Thus, this estimator yields a continuous spectrum

over the frequency, but does not explicitly provide a recon-
struction of the time series.

The estimation can be continued by repeating the proce-
dure using a higher order model. The absolute block error
will necessarily decrease with increasing order, meaning that
the data set will be increasingly better represented by the
model. However, the improvement is marginal at higher or-
ders, at a stage where signal noise is also being matched
by the model. Criteria for choosing an optimum order can
be very subjective. For the present situation, the min:-
mum information theoretic criterion (MAICE) introduced
by Akaike (1974) has been used when required.

Time Series Reconstruction
A time series reconstruction is possible using the autocor-
relation function, Eq. (6).

Uiy kAr = Ui Pk (12)

Two cases are examined more closely. For a first order pro-
cess, the interpolation becomes

Ui+ kAT = Ui¢f (13)

Thus, the interpolation is an exponential decay from the last
velocity sample, with a decay parameter (1-¢1). Since, how-
ever, the integral time constant of a first order AR process
is just A7/(1—¢1), this is equivalent to the single exponen-
tial interpolation presented by Hgst-Madsen (1994). For a
second order process, a velocity value is required at a time
AT before the last LDA sample. Since this value is not
available in the data set, it must be generated in some man-
ner. One possibility would be to invoke the symmetry of the
autocorrelation function about the sample point.

SIMULATION AND EXPERIMENTAL DETAILS

The performance of the new spectral estimator has been
examined using both simulations and experiments. The sim-
ulation is based on the very extensively developed simula-
tion techniques reported by Fuchs et al. (1992) and Fuchs
et al. (1994). These techniques allow LDA data sets to
be generated on the basis of a simulated, three-dimensional
velocity series with a prescribed data density. The under-
lying process is an autoregressive process of desired order,
generated for very small time steps, typically 100 times per
integral time scale. The use of simulated data sets has the
advantage that the true flow statistics are known.

Alternatively, experiments can be performed with the
LDA. However, it is desirable in this case to also measure
the flow velocity with a hot-wire anemometer (HWA), to
have comparison data available. In the present case, HWA
and LDA measurements were performed in the wake of a
square cylinder.

Finally, a combination of experiment and simulation is
possible and has proven very valuable in the past. The hot-
wire signal, sampled at a high data rate (> 100/integral



time scale), can be used as an input primary series to the
simulation, rather than the AR process mentioned above.
Particle arrivals can then be generated on this series, rep-
resenting an LDA data set but having exactly the statistics
of the HWA signal. In this way the LDA estimator can
be compared to the HWA without actually performing an
LDA experiment. This technique has been shown to be very
reliable, by comparing such simulations with real LDA mea-
surements (Fuchs et al., 1994). The combination technique
has the advantage of not being restricted to an AR process
for the simulation.

RESULTS

Simulations

The simulation is first used to investigate the influence
of data density and block size on the spectral estimation.
The flowfield has been simulated with a turbulence inten-
sity of 30%, allowing a one-dimensional, instead of a three-
dimensional flowfield simulation (Fuchs et al. 1992). A
higher level of turbulence would lead to higher turbulence-
induced bias errors of the spectrum, as discussed in Tropea
(1987). However, in the present study, the variance and not
the bias of the estimator is of more interest initially. A first
order autoregressive process with an integral time scale of
1 time unit was used. The data density was varied between
0.2 and 5, a range which is considered low for moment esti-
mation.

The results are summarized in Fig. 5 for three data den-
sities and three block sizes. The function gx has been com-
puted using N = 64, with a slot width of A7 = 1/20 time
units, thus the spectrum will be available up to a frequency
of 10 (1/time unit). The block size has been varied between
N =10 and N = 2430 LDA samples, representing a block
length of approximately 7' = 2 to 12150 time units, depend-
ing on the data density. All results have been obtained by
averaging the spectra of 10 blocks.

In each diagram of Fig. 5, four curves have been included:
the theoretical AR spectrum, the model based spectral esti-
mate (MB), the direct spectrum with residence time weight-
ing (D) and the sample and hold (S+H) reconstruction. In
the case of the direct spectrum, the reciprocal of the velocity
was used as a weight rather than the residence time, since
the flow was one-dimensional. Thus, the residence time sim-
ulation stage could be avoided.

The model based estimate is seen to be, in general, an
improvement over both the direct and the S+H estimates.
At high frequencies, an aliasing effect in the model based
result is evident. This could be avoided by decreasing the
slot width Ar. However, then N, must be increased above
64 to maintain the same frequency range. This increases the
computational load considerably.

At small block sizes, all methods show large deviations
from the true spectrum. Note however, that only 100 data
points (20 integral time scales) are being used in total for

these estimates (10 x 10). The direct method also shows
artifacts of the rectangular window for low frequencies.

For the low data densities (Np = 0.2), the ‘step noise’ and
‘particle rate filter’, as discussed by Adrian and Yao (1987)
are apparent for the S4+H estimate. The model based esti-
mate is not influenced in this manner and continues to show
good agreement with the true spectrum, at least for N >
270. In this simulation example therefore, the model based
estimated is particularly advantageous for low data densities
where, to date, no suitable alternative has been found.

The results of Fig. 5 illustrate also that the model based
spectrum 1is very smooth, in contrast to the irregular curves
of the direct estimate and the S+H estimate. This is some-
what misleading, since indeed the model based spectrum has
a variance. This can be estimated as the variance over the
10 spectra which contribute to the presented result. This
variance will not change with the number of blocks (only
the variance of the averaged estimate willl). However, it
does change with the block duration, either through the
data density or the number of data samples per block. This
is illustrated in Fig. 6, where the model based spectra for
selected conditions in Fig. 5 have been replotted, adding
error bars to indicate the variance over the 10 blocks aver-
aged. As the block duration increases from 7' = 54 to T' =
270 and then to T' = 2430, the variance decreases. At low
frequencies, the variance is larger, since fewer ‘periods’ at
those frequencies have been acquired and processed.

A second simulation has been performed to indicate the
effect of the order of the model chosen. In this case, an
LDA data set has been generated using a second order AR
process with an integral time scale of 1 time unit and a
data denstiy of 5. A spectral estimate based on one block of
1000 LDA samples was computed for both a first and second
order model. The results of this simulation are presented in
Fig 7. Clearly, the first order model is inappropriate and
the second order model performs very well, as expected.

Experiments

One experiment was performed in which both LDA and
HWA measurements were carried out. Details of this exper-
iment can be found in Miiller et al. (1994). The turbulence
intensity was 4.6%, with an integral time scale of 3 ms. The
average particle rate was 212 s7', giving a data density of
Np = 1.6.

The results of this experiment are illustrated in Fig. 8. In
each of the two diagrams, the spectrum of the hot-wire sig-
nal is used as a reference. The model based (MB) estimate,
performed for a second order AR model, is clearly supe-
rior to the direct estimation in the higher frequency range.
The periodicity in the signal is, however, not as well dis-
tinguished by the model based estimate. This presumably
is due to the low data density and the high estimator vari-
ance at these frequencies. At higher frequencies, at which
the HWA signal indicates a second slope in the spectrum,
the model based estimate also fails. This is a consequence
of the fact that a second order AR process is simply not a



good description of the physical process, i.e. the a prior:
information used is not appropriate.

Simulations Based on Experiments
A second experiment was performed to generate HWA

data, suitable to be used as a primary series for further
simulation. Measurements were performed eight diameters
downstream of an axisymmetric air jet, on the centerline.
The turbulence level was approximately 19%, the mean ve-
locity 9.55 m/s and the integral time scale 3 ms. The HWA
signal was sampled at 20 kHz (60 times per integral time
scale). The spectrum of this signal was used as a reference,
with which to compare the LDA estimate.

LDA data was then generated at data densities of Np =
0.5, 1.6 and 5.0, using the HWA data and the simulation
program. The results of first order, model based spectral
estimation are shown in Fig. 9, together with direct estima-
tion and S4+H estimation. In each case, 20 blocks, each 300
LDA samples long, were processed. The data rate is also
shown in each diagram for reference.

The HWA signal clearly shows two distinct slopes in the
spectrum, as was the case in the previous experiments pre-
sented in Fig. 8. None of the estimators are successful
in capturing this feature of the spectrum, regardless of the
data rate. In the case of the S4+H spectrum, the ‘filter’ ef-
fect takes over at approximately N/Zﬂ, i.e. in the best case
at approximately 200 Hz, which lies below the frequency
of the second slope (= 1200 Hz). At ‘high’ data densities
(Np = 5), the S+H and model based estimates are sim-
ilarly good, whereas the direct estimate is unsatisfactory.
However, for the data densities of Np = 1.6 and Np =
0.5, the model based estimate is clearly advantageous. The
S+H estimated begins to exhibit ‘step noise’ and the effect
of the ‘particle filter’. An estimation of the spectrum using
a second order AR process did not lead to any significant
improvements.

CONCLUDING REMARKS

A new LDA spectral estimator has been introduced, which
presupposes that the physical process of velocity fluctua-
tions can be described by a model, in this case an autore-
gressive model. As expected, in situations or at frequencies
at which this assumption is not valid, the new estimator
does not perform well. However, it is apparently not worse
than other available estimators. The model based estima-
tor, on the other hand, appears to yield especially reliable
results for very low data densities, much superior to other al-
ternative LDA spectral estimators. Improvements could be
expected if a model were available which, like turbulence,
exhibited two distinct slopes in the spectrum. The authors
are not aware of such an appropriate model as yet.

Alternatively, hybrid approaches may be interesting to
investigate, for instance, the combination of model based
estimation and signal reconstruction. Certainly, a direct
comparison of the single exponential interpolation technique

with the model based technique would be enlightening in
this respect and will be the subject of future investigations.

Finally, the authors wish to acknowledge the financial
support of the Deutsche Forschungsgemeinschaft through
grants Tr 194/9 and Mu 1117/1-1.
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Figure 9: Comparison of model based (MB), direct (D) and sample and hold (S+H) spectral estimators for a data set generated

from a measured HWA signal



