
MODEL PARAMETER ESTIMATION FROM LDA DATAAT LOW PARTICLE DENSITIESE. M�uller, H. NobachInstitut f�ur Nachrichtentechnik und InformationselektronikUniversity of RostockRostock, GermanyC. TropeaLehrstuhl f�ur Str�omungsmechanikUniversity of ErlangenErlangen, GermanyABSTRACTThe estimation of spectra from LDA data using modelparameter estimation is examined. An ARMA (Autoregres-sive Moving Average) process is used to model the ow ve-locity uctuations and the model parameters are estimatedthrough the autocorrelation function. This new techniqueis described in detail and its performance, particularily forlow data densities is examined using simulations and exper-iments. The estimator is shown to be well suited, not onlyfor low data densities, but also for short record lengths, aswould be expected in some transient ow�elds.INTRODUCTIONThe randomness of particle arrivals in the measurementvolume of a laser Doppler anemometer (LDA) must be con-sidered when computing statistical quantities of the veloc-ity �eld. This is especially true for the estimation of thepower spectral density, or spectrum, since the arrival timesof particles will directly inuence the frequency of velocityuctuations which can be resolved. A considerable numberof spectral estimators for LDA data have been suggested inthe past, several of which will be described below. Generallyspeaking however, most estimators perform well if the datadensity, i.e. the mean number of particles per integral owtime scale, is su�ciently high. The challenge to performwell is greater if the data density decreases and even moreso, if at the same time, the data set is of short duration, forexample in the case of transient ow�elds such as in engines.This is precisely the situation which motivated the presentwork, which introduces a new LDA spectral estimator basedon model parameter estimation.The large number of possible spectral estimators can beinterpreted according to the broad classi�cation shown in

Fig. 1. The non-parametric methods generally assume nopre-knowledge of the velocity signal, and a prescribed com-putational procedure is followed, independent of the inputdata. Model based approaches assume a particular model orfamily of models for the signal or one of its derivative quan-tities, and the model parameters are adjusted to achieve aminimum deviation from the target function. With veryfew exceptions (Veynante and Candel, 1988a, van Maa-nen, 1994), previously proposed estimators have been non-parametric, presumably to avoid the necessity of having apriori knowledge about the signal.Of the non-parametric approaches, both the direct estima-tion and signal reconstruction have been widely used and,for most estimators, have also been well analysed with re-spect to performance. The direct estimation can be per-formed using the discrete Fourier transformation (DFT), asproposed initially by Gastor and Roberts (1975) and dis-cussed in more detail in subsequent publications (Gastorand Roberts, 1977, Roberts et al., 1980). Alternatively,the correlation function can �rst be estimated, eg. usinga slot correlation, followed by a Fourier transform (Bell,1986, Mayo, 1975, Scott 1974). The direct estimation asdescribed in Roberts et al. (1980), will also be used in thepresent study for comparison purposes. The method hasbeen slightly modi�ed in that the individual velocity sam-ples have been weighted with their residence time, as out-lined in M�uller et al. (1994). This has shown to yield abetter estimate of the total power, especially at low datadensities (Nobach, 1993).Signal reconstruction with resampling at equidistant timeintervals, as a means of spectral estimation, has receivedincreased attention in recent years, although the zero orderreconstruction { sample and hold (S+H) { dates back to



the digital sampling of the analog output of tracker proces-sors. In the meantime, the S+H reconstruction has beenwell analysed in terms of spectral content (Adrian and Yao,1987) and in terms of moments (Edwards and Jensen, 1983).More complex reconstruction schemes have been proposed,including higher order polynomials, projection onto convexsets (POCS) (Lee and Sung, 1992), fractal reconstruction(Chao and Leu, 1992) and the so-called Shannon reconstruc-tion (Veynante and Candel, 1988b, Clark et al., 1985). Arecent examination of di�erent schemes has led however, tothe conclusion that none of these techniques can be consid-ered universally superior to either the direct estimation orthe S+H reconstruction (M�uller et al., 1994).Perhaps the most promising reconstruction approach todata has been presented as a single exponential interpolation(H�st-Madsen, 1994), in which the signal between samplescan be described asX 0(t) = e�b(t�t�)X(t�) (1)where t� is the arrival time of the previous sample and b isa decay constant to be prescribed. A value of b=0 leads tothe S+H reconstruction. Letting b tend to in�nity, whileat the same time scaling with b, represents the direct esti-mation. Excellent results were obtained using for the valueof b the inverse of the integral time scale and thus, a decay-ing function between samples. Evaluation of the estimatorwas based on the interpolation error, de�ned as the addedstandard deviation of the spectrum. On this basis, the sin-gle exponential interpolation achieves at low data densitiescomparable results to the direct estimation and, at high datadensities, results comparable to the S+H and is thus shownto be an appropriate estimator for the entire range. Fur-ther details of this technique can be found in H�st-Madsen(1994).Despite the very good performance of the single exponen-tial interpolation, it is reasonable to assume that improve-ments can be achieved if a priori information concerningthe signal is available and can be entered into the estima-tion process. The parametric estimator introduced in thefollowing section allows this. Its performance will however,clearly depend on how good the a priori assumptions matchthe physical process.DESCRIPTION OF THE ESTIMATION PROCEDUREProcess ModelThe estimation procedure is based on matching the mea-sured velocity information to an ARMA (AutoregressiveMoving Average) process, as described in its most generalform for a time sequence as (Box and Jenkins, 1976):zk = �1zk�1+ : : :+�pzk�p+ak��1ak�1� : : :��qak�q (2)

where p and q are the orders of the AR and MA processesand a is the added white noise. In the following study, wewill restrict ourselves to the AR processzk = �1zk�1 + : : :+ �pzk�p + ak (3)with the �nite set of weight parameters �1; : : : ; �p. Thevariance of the process is given by�2z = �2a1� �1�1 � �2�2 � : : :� �p�p (4)with �i = RiR0 (5)using the autocorrelation functionRk = �1Rk�1 + �2Rk�2 + : : :+ �pRk�p k > p (6)The spectrum of the AR process is given byS(f) = 2�2aj1� �1e�i2�f � : : :� �pe�i2�pf j2 (7)The integral time scale of the process is de�ned asI = Z 10 j�(�)jd� (8)Error FunctionThe basic procedure to be followed is shown schematicallyin Fig. 2. The input velocity information is compared to theprocess model on the basis of a target function, such as theautocorrelation function or the spectrum. The deviationsare evaluated as an error function, which is used to alter theprocess model parameters to iteratively achieve minimumdeviation. The resultant parameter set then represents thebest match of the model to the physical process. Furtheriterations can be performed to optimize the model order.Also initial statistics of the velocity information, such asmean or variance, can be used as preset and �xed values forthe process model.In the present case, a function related to the autocorrela-tion function has been used as a target function. This func-tion is designated as gk . For the velocity series, this functionis computed using a slotting technique, with Ns slots, eachof duration �� , typically 1-5% of the model integral timescale. In computing the target function gk however, the sumof the cross products accumulated in each slot is not dividedby the number of products used.gk = N�1Xi;j=1 u(ti)u(tj) (k � 1)�� < tj � ti � k�� (9)



Furthermore, in the �rst slot, no self-products are included.The error function is then computed as�2 = NsXk=1(RkNk � gk)2 (10)where Nk is the number of products in Eq. (9) contributingto the function gk . Thus, the square error in slots with moreproducts contribute more to the total error, resulting in alinear weighting of �2 with the number of products in theslot. Note that this is not equivalent to forming the errorfunction �̂2 = NsXk=1(Rk � gk=Nk)2 (11)since this estimate will be strongly biased when Nk is small,as is mostly the case. Eq. (10) also illustrates why theself products are neglected in the �rst slot. Otherwise theywould contribute disproportionately to the error.Iteration AlgorithmThe goal is to minimize �2 by choosing an appropriatemodel parameter set. This is straightforward for a model of�rst order, in which only the parameter �1 must be found.For a second order model, local minima can appear, depend-ing on the step width used for iteration. Therefore a specialsearch strategy has been developed, applicable for all modelorders. The method will be illustrated for order 2.The search begins by computing �2 for the initial weightparameters �1 = �2 = 0 (white noise). Using an initial stepsize of ��1 = ��2 = 0.5, the change of �2 is computed forthe eight vector directions (1,0), (1,1), . . . (1,-1) as indicatedin Fig. 3. The direction with the largest decrease in �2 ischosen and the search continues from this point with thesame step size, again searching in eight directions. Thiscontinues until a minimum in �2 is found, upon which thestep size is halved. The search is terminated when the stepsize reaches 10�12. Note that the weight parameters arevalid only for the chosen slot width �� .Fig. 4 illustrates a few selected iso-curves of �2 in the�1 � �2 plane, computed using a very small step size grid.The correct weight parameters are �1 = 0.7 and �2 = 0.2.At an intermediate iteration, a local minimum is seen to liea considerable distance away from the correct value. Notethat this search procedure can be extended easily to higherorders. The number of local search direction vectors in-creases correspondingly.Spectral EstimateThe iteration algorithm is carried out for each block ofdata, yielding the optimized weight parameters for thatblock. This parameter set can then be used to form a con-tinuous spectrum according to Eq. (7). The �nal spectralestimate is taken as the average spectrum of Nb blocks ofdata. Thus, this estimator yields a continuous spectrum

over the frequency, but does not explicitly provide a recon-struction of the time series.The estimation can be continued by repeating the proce-dure using a higher order model. The absolute block errorwill necessarily decrease with increasing order, meaning thatthe data set will be increasingly better represented by themodel. However, the improvement is marginal at higher or-ders, at a stage where signal noise is also being matchedby the model. Criteria for choosing an optimum order canbe very subjective. For the present situation, the mini-mum information theoretic criterion (MAICE) introducedby Akaike (1974) has been used when required.Time Series ReconstructionA time series reconstruction is possible using the autocor-relation function, Eq. (6).ui+k�� = ui�k (12)Two cases are examined more closely. For a �rst order pro-cess, the interpolation becomesui+k�� = ui�k1 (13)Thus, the interpolation is an exponential decay from the lastvelocity sample, with a decay parameter (1-�1). Since, how-ever, the integral time constant of a �rst order AR processis just ��=(1��1), this is equivalent to the single exponen-tial interpolation presented by H�st-Madsen (1994). For asecond order process, a velocity value is required at a time�� before the last LDA sample. Since this value is notavailable in the data set, it must be generated in some man-ner. One possibility would be to invoke the symmetry of theautocorrelation function about the sample point.SIMULATION AND EXPERIMENTAL DETAILSThe performance of the new spectral estimator has beenexamined using both simulations and experiments. The sim-ulation is based on the very extensively developed simula-tion techniques reported by Fuchs et al. (1992) and Fuchset al. (1994). These techniques allow LDA data sets tobe generated on the basis of a simulated, three-dimensionalvelocity series with a prescribed data density. The under-lying process is an autoregressive process of desired order,generated for very small time steps, typically 100 times perintegral time scale. The use of simulated data sets has theadvantage that the true ow statistics are known.Alternatively, experiments can be performed with theLDA. However, it is desirable in this case to also measurethe ow velocity with a hot-wire anemometer (HWA), tohave comparison data available. In the present case, HWAand LDA measurements were performed in the wake of asquare cylinder.Finally, a combination of experiment and simulation ispossible and has proven very valuable in the past. The hot-wire signal, sampled at a high data rate (> 100/integral



time scale), can be used as an input primary series to thesimulation, rather than the AR process mentioned above.Particle arrivals can then be generated on this series, rep-resenting an LDA data set but having exactly the statisticsof the HWA signal. In this way the LDA estimator canbe compared to the HWA without actually performing anLDA experiment. This technique has been shown to be veryreliable, by comparing such simulations with real LDA mea-surements (Fuchs et al., 1994). The combination techniquehas the advantage of not being restricted to an AR processfor the simulation.RESULTSSimulationsThe simulation is �rst used to investigate the inuenceof data density and block size on the spectral estimation.The ow�eld has been simulated with a turbulence inten-sity of 30%, allowing a one-dimensional, instead of a three-dimensional ow�eld simulation (Fuchs et al. 1992). Ahigher level of turbulence would lead to higher turbulence-induced bias errors of the spectrum, as discussed in Tropea(1987). However, in the present study, the variance and notthe bias of the estimator is of more interest initially. A �rstorder autoregressive process with an integral time scale of1 time unit was used. The data density was varied between0.2 and 5, a range which is considered low for moment esti-mation.The results are summarized in Fig. 5 for three data den-sities and three block sizes. The function gk has been com-puted using Nk = 64, with a slot width of �� = 1/20 timeunits, thus the spectrum will be available up to a frequencyof 10 (1/time unit). The block size has been varied betweenN = 10 and N = 2430 LDA samples, representing a blocklength of approximately T = 2 to 12150 time units, depend-ing on the data density. All results have been obtained byaveraging the spectra of 10 blocks.In each diagram of Fig. 5, four curves have been included:the theoretical AR spectrum, the model based spectral esti-mate (MB), the direct spectrum with residence time weight-ing (D) and the sample and hold (S+H) reconstruction. Inthe case of the direct spectrum, the reciprocal of the velocitywas used as a weight rather than the residence time, sincethe ow was one-dimensional. Thus, the residence time sim-ulation stage could be avoided.The model based estimate is seen to be, in general, animprovement over both the direct and the S+H estimates.At high frequencies, an aliasing e�ect in the model basedresult is evident. This could be avoided by decreasing theslot width �� . However, then Ns must be increased above64 to maintain the same frequency range. This increases thecomputational load considerably.At small block sizes, all methods show large deviationsfrom the true spectrum. Note however, that only 100 datapoints (20 integral time scales) are being used in total for

these estimates (10 � 10). The direct method also showsartifacts of the rectangular window for low frequencies.For the low data densities (ND = 0.2), the `step noise' and`particle rate �lter', as discussed by Adrian and Yao (1987)are apparent for the S+H estimate. The model based esti-mate is not inuenced in this manner and continues to showgood agreement with the true spectrum, at least for N �270. In this simulation example therefore, the model basedestimated is particularly advantageous for low data densitieswhere, to date, no suitable alternative has been found.The results of Fig. 5 illustrate also that the model basedspectrum is very smooth, in contrast to the irregular curvesof the direct estimate and the S+H estimate. This is some-what misleading, since indeed the model based spectrum hasa variance. This can be estimated as the variance over the10 spectra which contribute to the presented result. Thisvariance will not change with the number of blocks (onlythe variance of the averaged estimate will!). However, itdoes change with the block duration, either through thedata density or the number of data samples per block. Thisis illustrated in Fig. 6, where the model based spectra forselected conditions in Fig. 5 have been replotted, addingerror bars to indicate the variance over the 10 blocks aver-aged. As the block duration increases from T = 54 to T =270 and then to T = 2430, the variance decreases. At lowfrequencies, the variance is larger, since fewer `periods' atthose frequencies have been acquired and processed.A second simulation has been performed to indicate thee�ect of the order of the model chosen. In this case, anLDA data set has been generated using a second order ARprocess with an integral time scale of 1 time unit and adata denstiy of 5. A spectral estimate based on one block of1000 LDA samples was computed for both a �rst and secondorder model. The results of this simulation are presented inFig 7. Clearly, the �rst order model is inappropriate andthe second order model performs very well, as expected.ExperimentsOne experiment was performed in which both LDA andHWA measurements were carried out. Details of this exper-iment can be found in M�uller et al. (1994). The turbulenceintensity was 4.6%, with an integral time scale of 3 ms. Theaverage particle rate was 212 s�1, giving a data density ofND = 1.6.The results of this experiment are illustrated in Fig. 8. Ineach of the two diagrams, the spectrum of the hot-wire sig-nal is used as a reference. The model based (MB) estimate,performed for a second order AR model, is clearly supe-rior to the direct estimation in the higher frequency range.The periodicity in the signal is, however, not as well dis-tinguished by the model based estimate. This presumablyis due to the low data density and the high estimator vari-ance at these frequencies. At higher frequencies, at whichthe HWA signal indicates a second slope in the spectrum,the model based estimate also fails. This is a consequenceof the fact that a second order AR process is simply not a



good description of the physical process, i.e. the a prioriinformation used is not appropriate.Simulations Based on ExperimentsA second experiment was performed to generate HWAdata, suitable to be used as a primary series for furthersimulation. Measurements were performed eight diametersdownstream of an axisymmetric air jet, on the centerline.The turbulence level was approximately 19%, the mean ve-locity 9.55 m/s and the integral time scale 3 ms. The HWAsignal was sampled at 20 kHz (60 times per integral timescale). The spectrum of this signal was used as a reference,with which to compare the LDA estimate.LDA data was then generated at data densities of ND =0.5, 1.6 and 5.0, using the HWA data and the simulationprogram. The results of �rst order, model based spectralestimation are shown in Fig. 9, together with direct estima-tion and S+H estimation. In each case, 20 blocks, each 300LDA samples long, were processed. The data rate is alsoshown in each diagram for reference.The HWA signal clearly shows two distinct slopes in thespectrum, as was the case in the previous experiments pre-sented in Fig. 8. None of the estimators are successfulin capturing this feature of the spectrum, regardless of thedata rate. In the case of the S+H spectrum, the `�lter' ef-fect takes over at approximately _N/2�, i.e. in the best caseat approximately 200 Hz, which lies below the frequencyof the second slope (� 1200 Hz). At `high' data densities(ND = 5), the S+H and model based estimates are sim-ilarly good, whereas the direct estimate is unsatisfactory.However, for the data densities of ND = 1.6 and ND =0.5, the model based estimate is clearly advantageous. TheS+H estimated begins to exhibit `step noise' and the e�ectof the `particle �lter'. An estimation of the spectrum usinga second order AR process did not lead to any signi�cantimprovements.CONCLUDING REMARKSA new LDA spectral estimator has been introduced, whichpresupposes that the physical process of velocity uctua-tions can be described by a model, in this case an autore-gressive model. As expected, in situations or at frequenciesat which this assumption is not valid, the new estimatordoes not perform well. However, it is apparently not worsethan other available estimators. The model based estima-tor, on the other hand, appears to yield especially reliableresults for very low data densities, much superior to other al-ternative LDA spectral estimators. Improvements could beexpected if a model were available which, like turbulence,exhibited two distinct slopes in the spectrum. The authorsare not aware of such an appropriate model as yet.Alternatively, hybrid approaches may be interesting toinvestigate, for instance, the combination of model basedestimation and signal reconstruction. Certainly, a directcomparison of the single exponential interpolation technique
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� � �Figure 5: Results using a �rst order AR process simulation (Tu = 30%, 10 block averages): simulation model,Model based estimation, 2 S+H estimate, � direct estimation, ND data density, N number of samples, T blocklength
� � �Figure 6: The variance of the estimated spectra over 10 blocks of data



�Figure 7: Estimation of an AR(2) processusing a �rst and second order model 	 
Figure 8: Comparison of HWA and LDA spectrum: a) using direct estimation, b)using model based estimation
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� � �Figure 9: Comparison of model based (MB), direct (D) and sample and hold (S+H) spectral estimators for a data set generatedfrom a measured HWA signal


