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Abstract
The slotting technique for calculating the cross-correlation function
and the cross-spectra from two-channel data is revisited and extended by
recently developed processing steps.

1 Introduction

For calculating the correlation function or the power spectral density from ran-
domly sampled data from laser Doppler velocity measurements, estimation pro-
cedures are required, which consider the specific characteristics of LDV data,
namely the sampling of the flow velocity at random arrival times, the data noise
and the correlation of the sampling rate and the instantaneous velocity. Much
effort has been put onto autocorrelation and auto-spectral estimators following
thee different estimator classes, slot correlation, estimating a correlation func-
tion (correlogram) from the data [4L[7, 28] 29 [TT], 12} 15} 16}, 20} 22| 23], 241, 25| 27],
direct spectral estimators, estimating a spectrum (periodogram) directly from
the randomly sampled data [4, 5] [8, 9] L0 17, 18| [30] and interpolation methods
of the randomly sampled LDV data set yielding a continuous velocity over time,
which then is re-sampled equidistantly with a given sampling frequency and pro-
cessed by usual signal processing tools for equidistantly sampled data, including
corrections of systematic errors [2] [13, 21], 26] and noise removal [19] 21].

Much less details are known about respective estimation procedures for two-
channel data yielding the cross-correlation function and the cross-spectral den-
sity. So far detailed investigations exist about the following algorithms and
applications.

e In [I4] the possibility to use the slotting technique for the estimation of the
cross-correlation function and the cross-spectrum is mentioned. There, no
weighting mechanism has been realized, no local normalization, no fuzzy
slotting, and no investigation has been made about independent and de-
pendent measurements between the channels. For autocorrelation, weight-
ing schemes have been implemented [4], including the forward-backward



inter-arrival-time weighting if transit times for individual weighting are not
available [I5] [16], local normalization and fuzzy slotting [28] 29] 20} 27] as
well as Bessel’s correction, if the data sets or data blocks are short and
systematic errors due to the under-estimation of the block variance occur
if the empirical block mean value is removed from the data blocks [17, [1§].

The application of the interpolation method to LDV cross-correlation and
cross-spectra estimation has been investigated in [I4] and [6]. Unfortu-
nately, in both publications only special cases of two-channel measure-
ments have been studied, namely either strictly independent or strictly
coincident measurements in [6] or a mixture of only these two cases of
measurements in [I4]. The possibility of having a certain time delay of
dependent measurements between the measurement channels has been
mentioned in [14]. However, the there given procedures are valid only for
a mixture of independent measurements and coincident dependent mea-
surements between the channels, which is the case only if the respective
measurement volumes of the two channels overlap. The method inherent
weighting by holding the values longer if the data rate is lower can reduce
the statistical bias due to the correlation between the instantaneous data
rate and the velocity. At least at high data rates the suppression works
efficient. Other, individual weighting schemes have not been realized for
the interpolation method yet. Neither local normalization nor fuzzy slot-
ting, originally developed for the slot correlation, have been adapted to the
interpolation method so far. Bessel’s correction, to suppress systematic
errors due to the under-estimation of the velocity variances and velocity
co-variance for short data sets or data blocks was not available at that
time.

The direct estimation has been used for the estimation of autocorrela-
tion and auto-spectra only, including individual weighting [5, [9} 10} [30] or
forward-backward inter-arrival-time weighting and Bessel’s correction [17],
local normalization and fuzzy time quantization [I8]. Cross-correlation or
cross-spectra have not been calculated with the direct estimation proce-
dure so far.

The direct estimation has also been used with quantized arrival times
[B]. Quantized arrival times yield a quasi-equidistant data set with gaps
with no data between the original samples. Filling these gaps with ze-
ros yields an equidistant data set, which can be processed with common
signal processing tools. This way either the correlation function can be
calculated directly or the spectrum utilizing the fast Fourier transform.
Both, the correlation function and the spectrum then are related through
the Wiener-Khinchin theorem. This way the calculations for the direct
estimation can be accelerated significantly. Since the time quantization
changes the results obtained, this method is counted as a fourth esti-
mation type. It has not been used previously for the calculation of the
cross-correlation or the cross-spectrum.
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Figure 1: Fundamental sampling cases of two-channel laser Doppler data (CH1
and CH2) depending on the arrangement of the two measurement volumes MV1
and MV2: a) coincident measurements; b) independent measurements; ¢) mixed
independent and dependent measurements with variation of the delay time be-
tween the two channels

Unfortunately, the adaption of autocorrelation and auto-spectrum estima-
tors to the two-channel case for randomly sampled LDV data is not as straight
forward as for equidistantly sampled data. While for equidistant sampling, only
one of two identical data sets in the autocorrelation/auto-spectrum calculation
is replaced by a second data set, besides the always present irregular sampling
and the correlation between the velocity and the data rate, additionally depen-
dent and independent samples in the two channels must be considered [I4] in
the LDV case. Therefore, a detailed view into adequate estimation procedures
is necessary for the three classes of estimation procedures given above.

2 Dependent and independent measurements

Two-channel data from multi-component or multi-point LDV systems can pro-
duce different sampling cases depending on the configuration of the system.
These sampling characteristics may lead to different systematic errors. There-
fore, the following fundamental cases must be considered (Fig. .

e Coincident measurements: e.g. from two-component arrangements. The
two channels are sampled together. This scheme yields a data set with



identical sampling times ¢;; = to; = ¢; and with identical number of
samples N1 = Ny, = N. This is most similar to the autocorrelation case.
Estimation routines, errors and corrections are similar.

e Independent measurements: e.g. from transversal two-point measure-
ments. The sampling of the two channels (number of samples and sampling
times) is completely independent. This scheme yields a data set with no
dependence between the two channels. Both, the number of samples and
the sampling times of the two channels are independent of each other. The
errors and corrections are different from the coincidence case.

e Mixed measurements: e.g. from two-component arrangements in free-
running mode or from longitudinal two-point arrangements. There are
both, independent measurements, from particles that are measured by
only one of the two laser Doppler systems, and Ngep, dependent mea-
surements, from particles that cross both measurement volumes. In the
latter case, the respective dependent samples uqg1,; = u(tq,1,;) and uq 2, =
u(ta,2,;) at arrival times t41,; and t4,2,; respectively with ¢ =0... Ngep —1
are subsets of the measured data wy; = wu(t1,:),i = 0...N; — 1 and
ugj = u(taj),j = 0...Na — 1. The samples of the two channels are
time delayed (t4,1,; # td,2,i), where the delay tq may vary with the instan-
taneous velocity.

3 The data sets

In the most general case, the data sets are assumed to be a mixture of both, inde-
pendent measurements on the two channels as well as dependent measurements,
which yield samples in both channels with a prefered time delay of 4. In this,
general case, two sets of irregularly sampled velocity data uy; = uq(t1,;) and
ug,j = uz(ts;) at sampling times ¢1;,i =0... Ny —land to;,7 =0... Ny — 1
are assumed together with individual weights w;; and ws ; according to the
velocity samples u1,; and ug j, e.g. the particle’s transit times. If individual
weights are not available, the inter-arrival times can be used for weighting,
where both, the forward and the backward inter-arrival times may be necessary
for the correlation and spectral estimations.

Whw,1,i = L1 —t1,i-1
Wew,1: = t1i41 —T1s
Whw,2,j = ta2j—t2;-1
Wiw,2,j = 2441 — 1l

To avoid that gaps in the data stream of experimental data lead to improperly
large weights, as has been observed in experiments, all inter-arrival time weights
derived from inter-arrival times larger than five times the mean inter-arrival time
are set to zero. Due to this one looses only about 0.7 % of useful data, while
the outliers of large inter-arrival times are suppressed effectively.



Two other, special cases, are considered, namely the coincident measure-
ments, where the two channels share a common sampling, and the independent
measurements, where the sampling of the two channels is completely indepen-
dent, and no dependent measurements occur. In the case of only coincident
measurements, the two data sets have identical sampling, leading to the veloc-
ity data uy,; = ui(t;) and ug; = us(t;) at sampling times ¢;,i = 0...N — 1
together with individual weights w; ; and ws ;, which may be different or iden-
tical depending on the weighting scheme applied. In this case, also the forward-
and backward inter-arrival times are identical for the two channels.

For completely independent sampling and inter-arrival time weighting, a
differentiation of forward and backward inter-arrival times is not necessary. In
this particular case, the weights can be chosen as

Whw,1,i = Wiw,1,i = L15—t1i-1

Whw,2,j = Wiw,2,j = t25 —t25-1

4 Determination of the rates of dependent and
independent measurements and the preffered
time delay of dependent measurements

If the following procedures of correlation and spectrum estimation are used
with the forward-backwards inter-arrival time weighting, then the preffered time
delay tq between the two channels is required to be determined. Therefore first,
the rates of dependent and independent measurements are estimated. A similar
prerequirement has been investigated in [14]. The procedure given here follows
the same principals, however, the parameter identification has been modified,
allowing also dependent measurements with a preferred time delay tq # 0.

Assuming a number N; of measurements in the first channel and N5 in the
second channel, and a number of Ny, dependent measurements, which occur
in both channels, then the number of independent measurements in channel 1
is N1 — Ngep and in channel 2 it is Ny — Ngep. Counting the number of cross-
products one obtaines a total number of N; Ny cross-products, where the Ngep
dependent measurements concentrate around tq (Fig. leaving N1 No — Ngep
cross-products with a random triangular distribution p(7) between —Tp and
+T13 following the model distribution

o= a (1 11)

Defining a total length of the final correlation function T¢ < 2T (between
—Tc/2 and +7Tc/2), which includes all dependent measurements, one can expect to
have only independent cross-products outside this interval. Note that T¢ is usu-
ally chosen much smaller than the total length of the data set, if a subdivision
of the data set into blocks is made, the block length should still be significantly



Figure 2: Dependent and independent measurements

larger then the chosen length of the correlation function. By counting the num-
ber N¢ of cross-products falling into the interval T, assuming that the data
sets of the two channels have the same duration T, the remaining Ny Ny — N¢
cross-products distribute following the triangular shape between —Tp and —7c/2
and between +Tc/2 and +7g. This yields an expected height of the triangular
shape of independent measurements of

j:TC _ N1N; — Ng
P\ )T T — 1
B 2

at the time delay of £7c/2, which then leads to the amplitude A of the triangular
shape of independent measurements
e T (N1 N2 — Nc)

(o= %)’

All deviations from the triangular model distribution of independent mea-
surements are interpreted as dependent measurements by the following process-
ing methods.

To determine also the preferred time delay ¢4, the asymmetry of the distri-
bution of times between measurements within the interval T is used and the
deviation of the number N¢ of measured cross-products within T¢ from the
expected number of independent cross-products, yielding

Ni—1Ny—1
> > (tay—tiq)
i=0 j=0

_t2 =t <Tc/2

= No — ATc (1- )

The advantage of the method is that it is independent of the parameters of
the following estimation of the correlation function and the spectrum, except
for the time T which is re-used by all following methods as the total length of
the estimated correlation function.



To determine the fraction of dependent measurements within the slots of
different delay times, first the number of self- and cross-products in each slot is

counted through
Ny—1Np—1

wi2(Th) = Z > brlta; —t1i)

with
1 for |At — KAT| < AT/2

0 otherwise

bi(At) = {

This number is compared with the expected number of products if only inde-
pendent measurements are assumed, given through

{61

and finally, the fraction of dependent measurements in each slot is derived as
T

2 (- |a))

R’/ﬂ,12(7—k)

Tk

1B

d(Tk> =1-

This number is (around) 0, if only independent measurements are taken and,
it is (around) 1, if only dependent measurements are counted in the respective
slot. The latter case cannot be achieved due to the fact, that every two dif-
ferent measurements are independent, regardless of the kind of each of the two
measurements.

5 Slotting Technique

The slotting technique for the estimation of the cross-correlation function has
been given as a reference algorithm in [14]. The algorithm presented here,
principally follows the procedure, except for a few extensions/modifications,
which are

1. Individual weighting (e.g. transit-time weighting) has been implemented
as well as forward-backward inter-arrival time weighting [I5] [16] [I7] for
the case that reliable values of transit times are not available. The latter
weighting scheme additionally requires the estimation of the prefered time
delay tq between the measurement channels as given above.

2. If a large gap between measurements occurs, as has been seen in experi-
mental data, the forward-backward inter-arrival time weighting factor is
set to zero to suppress the affecting influence to the derived statistical
functions.

3. In the case of mixed dependent and independent measurements, espe-
cially if there is a certain delay of dependent measurements between the



channels, then the unique identification of the dependent measurements
among the samples in the two channels has not been realized so far. If
both, the dependent and the independent measurements, are mixed in
the summations, then the weighting of the two kinds of measurements
get incorrect. While independent measurements are correctly weighted
by the product of the indovidual weights, the dependent measurements
get overweighted in this case. Dependent measurements should be better
weighted by the square root of the product of the two individual weighting
factors. However, within a summation, variations of the weighting factors
are not possible. Therefore, for each slot, the fraction of dependent mea-
surements d(7y) is used to obtain an exponent ~y(7x) for the product of
weighting factors, which decreases with increasing number of dependent
measurements.
d()

2

() =1—

. Bessel’s correction of the correlation estimate is added, which suppresses
systematic deviations due the under-estimation of the velocity variance
for short data sets, if the mean is estimated and removed from the data
sets following [17].

Since these little modifications influence the entire estimation procedure, it is
summarized here including the appropriate changes.

5.1 Data pre-processing

The available data may be subdivided into blocks of a certain time duration
Tg or the data may be obtained in blocks of a given record length. Due to the
combination of Bessel’s correction and the temporal limitation of the correla-
tion function, both given below, the block duration can be chosen very flexible
(compare [I7]). It should be larger than the expected correlation interval of the
flow and can be as large as the full data set.

From the data series u1; = u1(t1,),4 =0... N1 — 1 and ug; = uz(t2,),i =

0...Ny — 1 and the appropriate weigths w;; and ws;, e.g. the transit times,
one can calculate the block mean values as

lel
Z W1,;U1,5
i=0

Ni—1

Z Wi,q
i=0

Ny—1
Z w2, ;U2 i
— _ 1=0
- No—1

> way
1=0



or, using the backward inter-arrival times as given above

Y Whw,1,iU1,i
_ =0
Ni—1

> Whw,1,i
=0
No—1
Whw,2,iU2,;
_ i=0
- No—1
Y. Whw,2,
=0

which is identical to the classical arrival-time weighting [3]. If the inter-arrival
time between two samples exceeds a certain limit, the inter-arrival time factor
can be set zero. Good experience has been obtained with a maximum value of
five times the mean inter-arrival time. Due to this one looses about 0.7 % of
useful data, while the outliers of large inter-arrival times are suppressed effec-
tively.

The block mean values then can be removed from the data to generate mean
free data blocks for the following calculations of the cross-correlation function
and the appropriate power spectral density.

5.2 Estimation of the initial correlation functions

The two correlation functions of the weighted velocities and that of the weights
are derived for individual weighting (e.g. transit-time weighting) as

Ni—1Nsy—1

Rip(m) = D 3 (wiawsy) ™ ugsug jbulta — t1)
i=0 j=0
Ni—1Ns—1
Ry o) = 3 D> (wiiws )™ by(ta; —t1)
i=0 =0
Ni1—1Ny—1
(k) = w1 ,iwa, bk (ta,; — t1,:)

? J

with bx(At) and (1) as introduced above, or, for forward-backward inter-
arrival weighting with only independent measurements (d(7;) = 0 leading to
Y(e) =1)
Ny—1Na—1
R, 1o(mk) = Z Z Whw,1,iWhw,2,jU1,iU2, 0k (t2 5 — 1)
i=0 j=0
Ny—1Na—1
Rio(m) = D whwpitwbw2be(ta; —t1)
i=0 j=0

Z;,12(Tk) = Rle(Tk)

)



or, for forward-backward inter-arrival weighting with a mixture of independent
and dependent measurements

Ni—1Np—1 .
Ry 12(mh) = i ZZ (wbw,l,iwfw,lj)’Y(Tk) ity <taj—ta uy jug, ;bx(ta,; — 1)
" =0 j=0 (Whw, 10w ,2,5) "™ 1 b > oy — ta R

Nt et (wy, W )’Y(Tk) ift1;, <t tq
w,1,i Ww, 2,5 1,4 25—
R,o(m) = > >, { ])vm) ! }bk(tzj —t14)

(Wiw,1,iWhw,2,j ift1; >t2;—ta

i=0 j=0

Ni—1Na—1 .
T = 3 Whyw,1,iWhw,2,5 1 t1,; <tz —ta bi (o — t1.4)
w,12 = = Wiw,1,iWhw,2,j if t1,; > ta; — ta 7 !

If the forward or backward inter-arrival time between two samples exceeds a
certain limit, the weigthing factor should be set zero. Good experience has
been obtained with a maximum value of five times the mean inter-arrival time.
Due to this one looses about 0.7 % of useful data, while the outliers of large
inter-arrival times are suppressed effectively. Note, that appropriate pre-factors
for the correlation functions have not been given, since the following normaliza-
tion doesn’t require an appropriate normalization here. Note further, that the
maximum time lag of the slot-correlation estimator is typically chosen smaller
than the duration of the measurement. With a chosen temporal resolution of
the correlation function A7 and a number of samples K, the correlation func-
tion will be estimated for k = — [K/2] ... |(K-1)/2| spanning a total length of
the correlation function of T = KA7. The same T¢ is used to estimate the
rates of independent and dependent measurements and the preffered time delay
between the channels ¢4, which is used within the correlation estimation for
forward-backward interarrival-time weighting to obtain independent weighting
factors for all measurements, dependent as well as independent.

Also note, that the above sums include the dependent pairs of measurements,
which have different sampling probabilities than the pairs of independent mea-
surements, like self- and cross-products in the autocorrelation case. Ideally, all
cross-procucts of dependent measurements should be removed from the double
sums (R!, ;5 and R], ;5). For coincident measurements, the identification of de-
pendent measurements can be obtained through the common sampling of the
two data channels. In this particular case, the removal of the dependent mea-
surements can be done equivalently to the autocorrelation case. Unfortunately,
no way of identifying dependent measurements uniquely from mixed indepen-
dent and dependent measurements has been found so far, where the dependent
measurements may have a temporal delay between the two channels, which may
even vary depending on the instantaneous velocity. Therefore, this influence is
present in the general estimation procedure. However, since any noise in the
two channels is independent, and varying sampling probabilities are corrected
by the following normalization, no systematic error is expected due to this in-
fluence. Furthermore, this influence decreases with an increasing length of the
data set or data block. Since the effort of calculations increases linearly with
the length of the data set, the slotting technique can always be used with the
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maximum length of the data sets without additional block subdevision.

5.3 Normalization, Bessel’s correction and final transfor-
mation

The final estimate of the correlation function is obtained by normalization as

Ry, 12(7%)
Rio(1i) = 5——
12( k) L;,12(Tk) b

including Bessel’s correction, where the correction cp is related to the estimated
variances of the mean estimators above. In the case of the slotting technique cp
is obtained similar to the procedure given in [I7] adpated to the cross-correlation

case as
[(K-1)/2]
R&,m(ﬂf)
k=—|%/2]
[(K-1)/2]

w—- X RZ;,lQ(Tk)
k=—|%/z2]

cp =

with
Ny—1 Nap—1
W (X (3
i=0 §=0
for the case of individual weights (e.g. transit-time weighting) or

Ni—1Nao—1 .
Woo— i i Whw,1,iWiw,2,5 if t1; <t2j —la
if tl,i > tg’j —tq

Wtw,1,iWbw,2,j

i=0 j§=0
Ni—1  Np—1 Ni—1  Np—1
= E g Wiy, 1,iWhw,2,jU1,iU2,5 + E g Whw,1,iWw, 2,5 U1, U2 5
i=0 j=0 i=0 j=0
ta j<t1,i+ta ta,j>t1 i+ta
Ni—1 Ny—1 No—1 Ny—1
= E Wiw,1,iU1,4 E Whw,2,5U2,5 | + E Wtw,2,5U2 5 E Whw,1,iU1,3
i=0 j=0 7=0 =0
to,j<t1i+tq t1,i<tz,j—ta

in the case of forward-backward inter-arrival weighting.
The final cross-correlation estimate can then be transformed by means of
the discrete Fourier transform (DFT) to a power spectral density

L(K—l)/QJ
SlQ(fj) = ATDFT {R12(Tk)} = AT Z RlZ(Tk’)ef%rnfj‘rk
k=—[%/2]

with f; = jAf,j = — |K/2| ... [(E-1)/2] giving a frequency resolution of Af =
1/KAT.
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5.4 Remarks

In the autocorrelation case, different probability densities for self and cross prod-
ucts and the fact of systematic errors of self-products due to noise in the data
make it necessary to exclude self-products from the sums of the slot-correlation
estimation [22]. In the cross-correlation case the noise in the two channels is
independent and hence, no systematic errors occur in the correlation due to this
noise. A statistical bias due to the correlation of the velocity and the instan-
taneous data rate are suppressed due to the implementation of the weighting
schemes [4, [I5], [16, T7]. An example program can be found at [I] including
local normalization and fuzzy slotting [28, 29, 20, 27, 18] adapted to the cross-
correlation case. Since dependent measurements are counted, a modification
of the weighting exponents depending on the fraction of dependent measure-
ments in a given slot is neccessary to avoid systematic errors due to different
probabilities of dependent and independent measurements.
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