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Abstract

New estimators are introduced for correlation functions and cross-
spectra between two channels of a laser Doppler velocimeter (LDV) based
on direct spectral estimation. The estimators are applicable either to
coincitent, two-component LDV data or to non-coincitent, independent,
two-point LDV data.

1 Introduction

For calculating the correlation function or the power spectral density from ran-
domly sampled data from laser Doppler velocity measurements, estimation pro-
cedures are required, which consider the specific characteristics of LDV data,
namely the sampling of the flow velocity at random arrival times, the data noise
and the correlation of the sampling rate and the instantaneous velocity. Much
effort has been put onto autocorrelation and auto-spectral estimators following
thee different estimator classes, slot correlation, estimating a correlation func-
tion (correlogram) from the data [4, 7, 30, 31, 11, 12, 16, 18, 22, 24, 25, 26, 27, 29],
direct spectral estimators, estimating a spectrum (periodogram) directly from
the randomly sampled data [4, 5, 8, 9, 10, 19, 20, 32] and interpolation methods
of the randomly sampled LDV data set yielding a continuous velocity over time,
which then is re-sampled equidistantly with a given sampling frequency and pro-
cessed by usual signal processing tools for equidistantly sampled data, including
corrections of systematic errors [2, 13, 23, 28] and noise removal [21, 23].

Much less details are known about respective estimation procedures for two-
channel data yielding the cross-correlation function and the cross-spectral den-
sity. So far detailed investigations exist about the following algorithms and
applications.

• In [14] the possibility to use the slotting technique for the estimation of the
cross-correlation function and the cross-spectrum is mentioned. There, no
weighting mechanism has been realized, no local normalization, no fuzzy
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slotting, and no investigation has been made about independent and de-
pendent measurements between the channels. For autocorrelation, weight-
ing schemes have been implemented [4], including the forward-backward
inter-arrival-time weighting if transit times for individual weighting are not
available [16, 18], local normalization and fuzzy slotting [30, 31, 22, 29] as
well as Bessel’s correction, if the data sets or data blocks are short and
systematic errors due to the under-estimation of the block variance occur
if the empirical block mean value is removed from the data blocks [19, 20].

• The application of the interpolation method to LDV cross-correlation and
cross-spectra estimation has been investigated in [14] and [6]. Unfortu-
nately, in both publications only special cases of two-channel measure-
ments have been studied, namely either strictly independent or strictly
coincident measurements in [6] or a mixture of only these two cases of
measurements in [14]. The possibility of having a certain time delay of
dependent measurements between the measurement channels has been
mentioned in [14]. However, the there given procedures are valid only for
a mixture of independent measurements and coincident dependent mea-
surements between the channels, which is the case only if the respective
measurement volumes of the two channels overlap. The method inherent
weighting by holding the values longer if the data rate is lower can reduce
the statistical bias due to the correlation between the instantaneous data
rate and the velocity. At least at high data rates the suppression works
efficient. Other, individual weighting schemes have not been realized for
the interpolation method yet. Neither local normalization nor fuzzy slot-
ting, originally developed for the slot correlation, have been adapted to the
interpolation method so far. Bessel’s correction, to suppress systematic
errors due to the under-estimation of the velocity variances and velocity
co-variance for short data sets or data blocks was not available at that
time.

• The direct estimation has been used for the estimation of autocorrela-
tion and auto-spectra only, including individual weighting [5, 9, 10, 32] or
forward-backward inter-arrival-time weighting and Bessel’s correction [19],
local normalization and fuzzy time quantization [20]. Cross-correlation or
cross-spectra have not been calculated with the direct estimation proce-
dure so far.

• The direct estimation has also been used with quantized arrival times
[5]. Quantized arrival times yield a quasi-equidistant data set with gaps
with no data between the original samples. Filling these gaps with ze-
ros yields an equidistant data set, which can be processed with common
signal processing tools. This way either the correlation function can be
calculated directly or the spectrum utilizing the fast Fourier transform.
Both, the correlation function and the spectrum then are related through
the Wiener-Khinchin theorem. This way the calculations for the direct
estimation can be accelerated significantly. Since the time quantization
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Figure 1: Fundamental sampling cases of two-channel laser Doppler data (CH1
and CH2) depending on the arrangement of the two measurement volumes MV1
and MV2: a) coincident measurements; b) independent measurements; c) mixed
independent and dependent measurements with variation of the delay time be-
tween the two channels

changes the results obtained, this method is counted as a fourth esti-
mation type. It has not been used previously for the calculation of the
cross-correlation or the cross-spectrum.

Unfortunately, the adaption of autocorrelation and auto-spectrum estima-
tors to the two-channel case for randomly sampled LDV data is not as straight
forward as for equidistantly sampled data. While for equidistant sampling, only
one of two identical data sets in the autocorrelation/auto-spectrum calculation
is replaced by a second data set, besides the always present irregular sampling
and the correlation between the velocity and the data rate, additionally depen-
dent and independent samples in the two channels must be considered [14] in
the LDV case. Therefore, a detailed view into adequate estimation procedures
is necessary for the three classes of estimation procedures given above.

2 Dependent and independent measurements

Two-channel data from multi-component or multi-point LDV systems can pro-
duce different sampling cases depending on the configuration of the system.
These sampling characteristics may lead to different systematic errors. There-
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fore, the following fundamental cases must be considered (Fig. 1).

• Coincident measurements: e.g. from two-component arrangements. The
two channels are sampled together. This scheme yields a data set with
identical sampling times t1,i = t2,i = ti and with identical number of
samples N1 = N2 = N . This is most similar to the autocorrelation case.
Estimation routines, errors and corrections are similar.

• Independent measurements: e.g. from transversal two-point measure-
ments. The sampling of the two channels (number of samples and sampling
times) is completely independent. This scheme yields a data set with no
dependence between the two channels. Both, the number of samples and
the sampling times of the two channels are independent of each other. The
errors and corrections are different from the coincidence case.

• Mixed measurements: e.g. from two-component arrangements in free-
running mode or from longitudinal two-point arrangements. There are
both, independent measurements, from particles that are measured by
only one of the two laser Doppler systems, and Ndep dependent mea-
surements, from particles that cross both measurement volumes. In the
latter case, the respective dependent samples ud,1,i = u(td,1,i) and ud,2,i =
u(td,2,i) at arrival times td,1,i and td,2,i respectively with i = 0 . . . Ndep−1
are subsets of the measured data u1,i = u(t1,i), i = 0 . . . N1 − 1 and
u2,j = u(t2,j), j = 0 . . . N2 − 1. The samples of the two channels are
time delayed (td,1,i 6= td,2,i), where the delay td may vary with the instan-
taneous velocity.

The direct spectral estimation has been realized only for the cases of coin-
cident measurements or the non-coincident, but completely independent mea-
surements. For the general case with both, depenedent and independent mea-
surements, no appropriate estimator, based on the direct spectral estimation,
has been developed yet.

3 The data sets

In the general case of two-channel data, two sets of irregularly sampled velocity
data u1,i = u1(t1,i) and u2,j = u2(t2,j) at sampling times t1,i, i = 0 . . . N1 − 1
and t2,j , j = 0 . . . N2 − 1 are assumed together with individual weights w1,i and
w2,j according to the velocity samples u1,i and u2,j , e.g. the particle’s transit
times. If individual weights are not available, the inter-arrival times can be used
for weighting, where both, the forward and the backward inter-arrival times may
be necessary for the correlation and spectral estimations.

wbw,1,i = t1,i − t1,i−1

wfw,1,i = t1,i+1 − t1,i
wbw,2,j = t2,j − t2,j−1

wfw,2,j = t2,j+1 − t2,j
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To avoid that gaps in the data stream of experimental data lead to improperly
large weights, as has been observed in experiments, all inter-arrival time weights
derived from inter-arrival times larger than five times the mean inter-arrival time
are set to zero. Due to this one looses only about 0.7 % of useful data, while
the outliers of large inter-arrival times are suppressed effectively.

In the general case of mixed independent and dependent data, in addition
to the individual sampling by the independent measurements, there are pairs
of dependent measurements u1,dep,i and u2,dep,i at sampling times t1,dep,i and
t2,dep,i, i = 0 . . . Ndep − 1 with the number Ndep of dependent measurements,
where the sampling times can be coincident as for two-component arrangements
with a coincidence window or different, with a varying delay as for the longitu-
dinal two-point arrangement.

In the case of only coincident measurements, the two data sets have identical
sampling at the times t1,dep,i = t2,dep,i, i = 0 . . . Ndep − 1. Since there are no
indipendent measurements, it follows N1 = N2 = Ndep. In this particular
case, the individual weights w1,dep,i and w2,dep,i may be different or identical
depending on the weighting scheme applied. In this case, also the forward- and
backward inter-arrival times are identical for the two channels.

For completely independent sampling and inter-arrival time weighting, a
differentiation of forward and backward inter-arrival times is not necessary. In
this particular case, the weights can be chosen as

wbw,1,i = wfw,1,i = w1,i = t1,i − t1,i−1

wbw,2,j = wfw,2,j = w2,i = t2,j − t2,j−1

and all formulae become identical to those of the individual weighting.
Since for the direct spectral estimation method, no practical method of iden-

tification of dependent measurements from experimental data has been found
so far, the data sets are assumed to be either completely independent or coin-
cident. For the case of mixed dependent and independent samples, no practical
algorithms has been realised, even if the following notation allows this for future
developments.

4 Direct Spectral Estimator

The direct spectral estimation follows the derivations in [19], where all proce-
dures have been adapted to the cross-correlation case.

4.1 Data pre-processing

The available data may be subdivided into blocks of a certain time duration
TB or the data may be obtained in blocks of a given record length. Due to the
combination of Bessel’s correction and the temporal limitation of the correla-
tion function, both given below, the block duration can be chosen very flexible
(compare [19]). It should be larger than the expected correlation interval of the
flow and can be as large as the full data set.
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From the data series u1,i = u1(t1,i), i = 0 . . . N1 − 1 and u2,i = u2(t2,i), i =
0 . . . N2 − 1 and the appropriate weigths w1,i and w2,i, e.g. the transit times,
one can calculate the block mean values as

ū1 =

N1−1∑
i=0

w1,iu1,i

N1−1∑
i=0

w1,i

ū2 =

N2−1∑
i=0

w2,iu2,i

N2−1∑
i=0

w2,i

or, using the backward inter-arrival times as given above

ū1 =

N1−1∑
i=0

wbw,1,iu1,i

N1−1∑
i=0

wbw,1,i

ū2 =

N2−1∑
i=0

wbw,2,iu2,i

N2−1∑
i=0

wbw,2,i

which is identical to the classical arrival-time weighting [3]. If the inter-arrival
time between two samples exceeds a certain limit, the weighting factor can be
set zero. Good experience has been obtained with a maximum value of five
times the mean inter-arrival time. Due to this one looses about 0.7 % of useful
data, while the outliers of large inter-arrival times are suppressed effectively.

The block mean values then can be removed from the data to generate mean
free data blocks for the following calculations of the cross-correlation function
and the appropriate power spectral density. For the direct estimation, the com-
putational costs increase with the square of the block length. Therefore, too
large a block duration will be computational costly.

4.2 Estimation of the initial functions

The derivation of the initial spectra and correlation functions follows [19], ad-
pated to the cross-correlation case.

First, direct spectral estimates of the weighted velocities and of the weights
themselfes are derived. For individual weighting (e.g. transit-time weighting)
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these are

S′u,12(f) =
TB

W

N1−1∑
i=0

N2−1∑
j=0

w1,iw2,ju1,iu2,je
−2πif(t2,j−t1,i)

−
Ndep−1∑
i=0

w1,dep,iw2,dep,iu1,dep,iu2,dep,ie
−2πif(t2,dep,i−t1,dep,i)


=

TB

W
[U∗1 (f)U2(f)− U12,dep(f)]

S′w,12(f) =
TB

W

N1−1∑
i=0

N2−1∑
j=0

w1,iw2,je
−2πif(t2,j−t1,i)

−
Ndep−1∑
i=0

w1,dep,iw2,dep,ie
−2πif(t2,dep,i−t1,dep,i)


=

TB

W
[W ∗1 (f)W2(f)−W12,dep(f)]

with

U1(f) = DFT {w1,iu1,i} =

N1−1∑
i=0

w1,iu1,ie
−2πift1,i

U2(f) = DFT {w2,iu2,i} =

N2−1∑
i=0

w2,iu2,ie
−2πift2,i

U12,dep(f) =

Ndep−1∑
i=0

w1,dep,iw2,dep,iu1,dep,iu2,dep,ie
−2πif(t2,dep,i−t1,dep,i)

W1(f) = DFT {w1,i} =

N1−1∑
i=0

w1,ie
−2πift1,i

W2(f) = DFT {w2,i} =

N2−1∑
i=0

w2,ie
−2πift2,i

W12,dep(f) =

Ndep−1∑
i=0

w1,dep,iw2,dep,ie
−2πif(t2,dep,i−t1,dep,i)

and
W = W ∗1 (0)W2(0)−W12,dep(0).

Note that all Ndep dependent measurements are included in both, the N1 mea-
surements in channel 1 and the N2 measurements in channel 2.

The above notation is valid for all three cases of sampling, the coincident
sampling, the independent as well as the mixed sampling with independent
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and dependent measurements. For coincident measurements all samples are
dependent and N1 = N2 = Ndep, w1,dep,i ≡ w1,i, w2,dep,i ≡ w2,i. In this case
the correction can be realized by using all measured samples in the appropriate
correction sums U12,dep(f) and W12,dep(f). For independent measurements is
Ndep = 0, and therefore no correction is required, the appropriate sums are zero.
Only the mixed sampling with independent and dependent measurements is
difficult to realize practically, because no unique identification of the dependent
measurements from measured data has been found so far.

For forward-backward inter-arrival time weighting the primary spectral es-
timates are

S′u,12(f) =
TB

W
[U12(f) + U ′12(f)]

S′w,12(f) =
TB

W
[W12(f) +W ′12(f)]

with

U12(f) =

N1−1∑
i=0

N2−1∑
j=0

t2,j<t1,i+td(t1,i)

wfw,1,iwbw,2,ju1,iu2,je
−2πif(t2,j−t1,i)

=

N1−1∑
i=0

wfw,1,iu1,ie
+2πift1,i


N2−1∑
j=0

t2,j<t1,i+td(t1,i)

wbw,2,ju2,je
−2πift2,j


U ′12(f) =

N1−1∑
i=0

N2−1∑
j=0

t2,j>t1,i+td(t1,i)

wbw,1,iwfw,2,ju1,iu2,je
−2πif(t2,j−t1,i)

=

N2−1∑
j=0

wfw,2,ju2,je
−2πift2,j

 N1−1∑
i=0

t1,i<t2,j−td(t2,j)

wbw,1,iu1,ie
+2πift1,i


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W12(f) =

N1−1∑
i=0

N2−1∑
j=0

t2,j<t1,i+td(t1,i)

wfw,1,iwbw,2,je
−2πif(t2,j−t1,i)

=

N1−1∑
i=0

wfw,1,ie
+2πift1,i


N2−1∑
j=0

t2,j<t1,i+td(t1,i)

wbw,2,je
−2πift2,j


W ′12(f) =

N1−1∑
i=0

N2−1∑
j=0

t2,j>t1,i+td(t1,i)

wbw,1,iwfw,2,je
−2πif(t2,j−t1,i)

=

N2−1∑
j=0

wfw,2,je
−2πift2,j

 N1−1∑
i=0

t1,i<t2,j−td(t2,j)

wbw,1,ie
+2πift1,i


and

W = W12(0) +W ′12(0).

Note, that for each of the four expressions for U12(f), U ′12(f), W12(f),
W ′12(f), the second sum is one addend of the first, outer sum. Note further, that
the sums are not independent of each other, which means that the Fourier trans-
form is not complete and direct calculations of the sums are necessary. Luckily,
the sums can be calculated parallel, such that only the individual samples must
be processed instead of all pairs of samples. If the forward or backward inter-
arrival time between two samples exceeds a certain limit, the weigthing factor
should be set zero. Good experience has been obtained with a maximum value
of five times the mean inter-arrival time. Due to this one looses about 0.7 % of
useful data, while the outliers of large inter-arrival times are suppressed effec-
tively. The equations for the forward-backward inter-arrival time weighting can
be re-used for individual weighting schemes (e.g. transit-time weighting), if the
forward as well as the backward weights are replaced by the individual weights
(wbw,i = wfw,i = wi).

The notation for the forward-backward inter-arrival time weighting is also
valid for all three cases of sampling, the coincident sampling, the independent
as well as the mixed sampling with independent and dependent measurements.
For coincident measurements all samples are dependent with td ≡ 0. In this
case the relation of sampling times t1,i < t2,j , t1,i = t2,j or t1,i > t2,j can be
identified by the relation of the indices i < j, i = j or i > j. For indepen-
dent measurements, the forward and backward weights can be chosen identical,
e.g. the backward inter-arrival weights, as the classical arrival-time weighting
scheme. In this particular case, the above formulae become first independent of
a specific delay time td and second identical to the formulae for the individual
weighting, e.g. the transit time weighting scheme, with the weights beeing the
backward inter-arrival times. Only the mixed sampling with independent and
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dependent measurements is difficult to realize practically, because no unique
identification of the dependent measurements or the varying delay time td(t1,i)
or td(t2,j) from measured data has been found so far.

Summarizing, for both, the transit-time weighting or other individual weight-
ing schemes as well as for the forward-backward inter-arrival weighting, the iden-
tification of dependent measurements between the two channels is possible for
coincident measurements and for fully independent measurements. For mixed
measurements with independent and dependent measurements, no unique so-
lution has been found to identify the dependent measurements from the data
streams. So the subtraction of the contribution of the dependent measuremnts
to the above sums cannot be realized, at least for measured data where no reli-
able information about the dependence is available. Unfortunately, in contrast
to the slot correlation method, with the direct spectral estimation method, the
following normalization in the correlation space also fails if a mixture of depen-
dent and independent measurements occurs with a preferred delay time different
than zero. Therefore, for the two special cases, the coincident measurements
and the fully independent measurements, different direct spectral estimators
have been realized, adapted to the specific cases. For the mixed independent
and dependent data case, unfortunately, no universal estimation algorithm could
be found.

The following processing steps, normalization and Bessel’s correction, re-
quire the primary spectral estimates to be transformed into correlation func-
tions. While the primary spectral estimates above can be calculated for any fre-
quency f , the transformation into correlation functions requires the definition
of a fundamental frequency F , which defines the temporal resolution ∆τ = 1/F
of the obtained correlation functions. The spectra as given above then must
be calculated for the frequencies fj = j∆f, j = −dTBF e . . . dTBF e − 1 with
∆f = 1/2TB and the cross-correlation functions can be obtained using the in-
verse DFT (IDFT)

R′u,12(τk) = F IDFT
{
S′u,12(fj)

}
=

1

2TB

dTBFe−1∑
j=−dTBFe

S′u,12(fj)e
2πiτkfj

R′w,12(τk) = F IDFT
{
S′w,12(fj)

}
=

1

2TB

dTBFe−1∑
j=−dTBFe

S′w,12(fj)e
2πiτkfj

At the same time the length of the correlation function can be reduced to a total
length of TC = K∆τ , where τk = k∆τ, k = −bK/2c . . . b(K−1)/2c, as a means to
reduce the estimation variance of the final spectral density [17, 19] derived from
the correlation function after the following normalization and Bessel’s correc-
tion.
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4.3 Normalization, Bessel’s correction and final transfor-
mation

The final estimate of the correlation function is obtained by normalization as

R12(τk) =
R′u,12(τk)

R′w,12(τk)
+ cB

including Bessel’s correction, where the correction cB is related to the estimated
variances of the mean estimators above. In the case of the direct estimation cB
is obtained similar to the procedure given in [19] adpated to the cross-correlation
case as

cB =

b(K−1)/2c∑
k=−bK/2c

R′u,12(τk)

TBF −
b(K−1)/2c∑
k=−bK/2c

R′w,12(τk)

.

The final cross-correlation estimate can then be transformed by means of the
discrete Fourier transform (DFT) to a power spectral density

S12(fj) = ∆τDFT {R12(τk)} = ∆τ

b(K−1)/2c∑
k=−bK/2c

R12(τk)e−2πifjτk

with fj = j∆f, j = −bK/2c . . . b(K−1)/2c giving a frequency resolution of ∆f =
1/K∆τ.

4.4 Remarks

Estimators of the cross correlation function and the cross spectral density for
irregularly sampled two-channel data have been derived for two special cases, for
coincident measurements and for fully independent measurements. For mixed
independent and dependent measurements, especially for the case that the pref-
fered delay time is different than zero, the developed procedure depends on a
unique identification of the dependent measurements. Since no practical realiza-
tion of a unique identification of the dependent measurements has been found,
an appropriate correction of the respective sums is not possible. Note that this
fact is similar to the slotting technique for estimating the cross correlation func-
tion and the cross spectral density. Unfortunately, in contrast to the slotting
technique, where the influence of the different probabilities of dependent and
independent measurements has been corrected using different weighting expo-
nents depending on the fraction of dependent measurements in a given slot, no
appropriate solution has been found for the direct estimation. In addition to
this error, the estimates of the primary spectra show long-lasting oscillations
if the preffered delay time is different than zero. If these spectral oscillation
don’t fit into the spectral range, also the correlation function shows oscillations
as a truncations error of the appropriate spectrum, even in combination with
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the normalization. This error can be avoided by quantizing the arrival times
of all measurements using the temporal resolution of the aspired correlation
function. However, the error due to the different probabilities of dependent and
independent measurements remains. A statistical bias due to the correlation of
the velocity and the instantaneous data rate are suppressed due to the imple-
mentation of the weighting schemes. Example programs for the the two cases
of either coincident data or fully independent data can be found at [1] including
extensions of the local normalization and the fuzzy slotting [20] adapted to the
cross-correlation case.
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