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Abstract

The slotting technique for calculating the autocorrelation function and
the spectrum from laser Doppler data is revisited and extended by recently
developed processing steps.

1 Introduction

For calculating the correlation function or the power spectral density from ran-
domly sampled data from laser Doppler velocity measurements, estimation pro-
cedures, which consider the specific characteristics of LDV data are required,
namely the sampling of the flow velocity at random arrival times, the data noise
and the correlation of the sampling rate and the instantaneous velocity. Much
effort has been put onto autocorrelation and autospectral estimators following
three different estimator classes, slot correlation, estimating a correlation func-
tion (correlogram) from the data [3, 26, 27, 9, 10, 13, 14, 18, 20, 21, 22, 23, 25],
direct spectral estimators, estimating a spectrum (periodogram) directly from
the randomly sampled data [3, 4, 5, 6, 7, 8, 15, 16, 28] and interpolation methods
of the randomly sampled LDV data set yielding a continuous velocity over time,
which then is re-sampled equidistantly with a given sampling frequency and
processed by usual signal processing tools for equidistantly sampled data, in-
cluding corrections of systematic errors [2, 11, 19, 24] and noise removal [17, 19].
A fourth processing method, using quantitized arrival times, has not achieved
much attention so far. It has been used before, in [12], however, it is broadly
available only after publication of [4], where it has been used to accelerate the
direct estimation of auto-spectra in combination with a normalization of the
appropriate correlation function.
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2 The data set

In the following processing steps a sets of irregularly sampled velocity data ui =
u(ti) at sampling times ti, i = 0 . . . N − 1 is assumed together with individual
weights wi according to the velocity smaples ui, e.g. the particle’s transit times.
If individual weights are not available, the inter-arrival times can be used for
weighting, where both, the forward and the backward inter-arrival times are
necessary for the correlation and spectral estimations.

wbw,i = ti − ti−1

wfw,i = ti+1 − ti

To avoid that gaps in the data stream of experimental data lead to improperly
large weights, as has been observed in experiments, all inter-arrival time weights
derived from inter-arrival times larger than five times the mean inter-arrival time
are set to zero. Due to this one looses only about 0.7 % of useful data, while
the outliers of large inter-arrival times are suppressed effectively.

3 Slotting Technique

The slotting technique is reviewed including individual data weighting (e.g.
transit-time weighting) or forward-backward inter-arrival-time weighting [13, 14]
as an alternative, if reliable estimates of the particle transit times are not avail-
able. To suppress the influence of data noise and to avoid varying probability
densities of pairs of data, no self-products are used (see [20]). Local normaliza-
tion [27, 25] and fuzzy slotting [18] are introduced as optional extensions of the
base algorithm. The Python code of the estimator is available at [1].

3.1 Base Algorithm

The slotting technique derives the autocorrelation function R(τk) at discrete
time lags τk = k∆τ by averaging the products of all data pairs ui and uj falling
into bins of the width ∆τ . For the base slotting technique with individual data
weighting or forward-backward inter-arrival-time (FBAT) weighting, without
self-products and with Bessel’s correction this is

R(τk) =
Ru(τk)

Rw(τk)
+ σ2

ū, (1)
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where σ2
ū is the estimate of the variance of the mean estimator (an appropriate

estimator follows) and

Ru(τk) =

N−1∑
i=0

N−1∑
j=0

i6=j

{
wbw,iwfw,j if ti < tj
wfw,iwbw,j if ti > tj

}
uiujbk(tj − ti) (2)

Rw(τk) =

N−1∑
i=0

N−1∑
j=0

i 6=j

{
wbw,iwfw,j if ti < tj
wfw,iwbw,j if ti > tj

}
bk(tj − ti) (3)

with

bk(∆t) =

{
1 for |∆t− k∆τ | < ∆τ/2
0 otherwise

. (4)

Note that for the slotting technique Ru(τk) and Rw(τk) are the raw sums of
cross-products. For forward-backward inter-arrival time weighting (FBAT), the
weights read as

wbw,i = ti − ti−1 (5)

and
wfw,i = ti+1 − ti. (6)

Here also, a maximum weight of five times the mean inter-arrival time is accepted
to avoid errors due to gaps in the data stream of experimental data. All values
beyond are set to zero. If other weighting schemes with individual data weights
wi are used, then wbw,i and wfw,i can be replaced by these individual weights
wi, e.g. the transit times for the well correcting transit time weighting (TT).

The maximum time lag is typically chosen smaller than the duration of the
measurement. With a chosen temporal resolution of the correlation function
∆τ and a number of samples K, the correlation function will be estimated for
k = −bK/2c . . . b(K−1)/2c and then be transformed by means of the discrete
Fourier transform (DFT) to a power spectral density

S(fj) = ∆τ ·DFT {R(τk)} = ∆τ

b(K−1)/2c∑
k=−bK/2c

R(τk)e−2πifjτk (7)

with fj = j∆f, j = −bK/2c . . . b(K−1)/2c giving a frequency resolution of ∆f =
1/K∆τ.

3.2 Local Normalization

With local normalization [26, 27, 25], an estimate of the correlation coefficient
function is derived as

ρ(τk) =
Ru(τk) + σ2

ūRw(τk)√
[Ru1

(τk) + σ2
ūRw(τk)] [Ru2

(τk) + σ2
ūRw(τk)]

, (8)
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where σ2
ū is the estimate of the estimation variance of the mean estimator (an

appropriate estimator follows) and Ru(τk) and Rw(τk) as before and additionally

Ru1
(τk) =

N−1∑
i=0

N−1∑
j=0

i6=j

{
wbw,iwfw,j if ti < tj
wfw,iwbw,j if ti > tj

}
u2
i bk(tj − ti) (9)

Ru2
(τk) =

N−1∑
i=0

N−1∑
j=0

i6=j

{
wbw,iwfw,j if ti < tj
wfw,iwbw,j if ti > tj

}
u2
jbk(tj − ti) (10)

To obtain a correlation function R(τk) and finally a power spectral den-
sity, the correlation coefficient function ρ(τk) is expanded by an estimate of the
velocities variance σ2

u yielding

R(τk) = σ2
uρ(τk) (11)

The velocity variance is estimated as

σ2
u =

N−1∑
i=0

wiu
2
i

N−1∑
i=0

wi

+ σ2
ū. (12)

The weights wi are as before for the mean estimate and σ2
ū again is the estimate

of the estimation variance of the mean estimator. Note that in the variance
estimate the data are assumed to be mean-free in both cases (naturally or by
estimating and removing the mean from the data), therefore ui is given in both
cases instead of ui − ū.

The final spectral estimate is again obtained from the correlation by a dis-
crete Fourier transform (DFT) as given above.

3.3 Fuzzy Slotting

Fuzzy slotting [26, 18] is known as a means to further decrease the estimation
variance especially at high frequencies. Instead of sharp boundaries between the
slots of inter-arrival times between all pairs of data samples, given by the slot
window function (of the kth slot) bk(∆t), smoother, triangular and overlapping
window functions

bk(∆t) =

{
1−

∣∣∆t
∆τ − k

∣∣ for |∆t− k∆τ | < ∆τ
0 otherwise

(13)

are used (Fig. 1).
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Figure 1: Sharp slotting vs. fuzzy slotting of inter-arrival times

3.4 Estimation of the variance of the mean estimator

Following the derivations in [15] to obtain an estimate of the variance of the
mean estimator from the data set, the previous sums Ru(τk) and Rw(τk) can
be re-used, yielding

σ2
ū =

b(K−1)/2c∑
k=−bK/2c

Ru(τk) +
N−1∑
i=0

wbw,iwfw,iu
2
i

W −
b(K−1)/2c∑
k=−bK/2c

Rw(τk)

. (14)

with

W =

N−1∑
i=0

N−1∑
j=0

i 6=j

{
wbw,iwfw,j if ti < tj
wfw,iwbw,j if ti > tj

}
(15)

= 2

N−2∑
i=0

N−1∑
j=i+1

wbw,iwfw,j (16)

= 2

N−1∑
j=1

wfw,j

(
j−1∑
i=0

wbw,i

)
(17)

Note, that this equation has been modified compared to [15].
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3.5 Remarks

A statistical bias due to the correlation of the velocity and the instantaneous
data rate are suppressed due to the implementation of the weighting schemes
[3, 13, 14, 15]. Since the self-products have been removed from the sums, noise
components in the data will not cause systematic errors in the derived statistical
functions. An example program can be found at [1].
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