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Abstract

The interpolation method for calculating the autocorrelation function
and the spectrum from laser Doppler data is revisited and extended by
recently developed processing steps.

1 Introduction

For calculating the correlation function or the power spectral density from ran-
domly sampled data from laser Doppler velocity measurements, estimation pro-
cedures, which consider the specific characteristics of LDV data are required,
namely the sampling of the flow velocity at random arrival times, the data noise
and the correlation of the sampling rate and the instantaneous velocity. Much
effort has been put onto autocorrelation and autospectral estimators following
three different estimator classes, slot correlation, estimating a correlation func-
tion (correlogram) from the data [3, 27, 28, 9, 10, 13, 15, 19, 21, 22, 23, 24, 26],
direct spectral estimators, estimating a spectrum (periodogram) directly from
the randomly sampled data [3, 4, 5, 6, 7, 8, 16, 17, 29] and interpolation methods
of the randomly sampled LDV data set yielding a continuous velocity over time,
which then is re-sampled equidistantly with a given sampling frequency and
processed by usual signal processing tools for equidistantly sampled data, in-
cluding corrections of systematic errors [2, 11, 20, 25] and noise removal [18, 20].
A fourth processing method, using quantitized arrival times, has not achieved
much attention so far. It has been used before, in [12], however, it is broadly
available only after publication of [4], where it has been used to accelerate the
direct estimation of auto-spectra in combination with a normalization of the
appropriate correlation function.

2 The data set

In the following processing steps a set of irregularly sampled velocity data ui =
u(ti) at sampling times ti, i = 0 . . . N − 1 is assumed. Individual weights, e.g.
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the particle’s transit times, cannot be considered by the present interpolation
method.

3 Interpolation Method

The interpolation method principally follows the procedure in [20], except for a
few extensions/modifications, which are

1. An additional weighting factor is introduced, which can be set zero, if a
large gap between measurements occurs, as has been seen in experimental
data. The removal of data gaps by weighting is similar to the procedure
introduced for the inter-arrival time or forwar-backward inter-arrival time
weighting for the other estimation procedures. Note that this particular
weighting factor for the interpolation method cannot be used as freely
as for the other two estimation methods, only factors of one or zero are
allowed here.

2. A model-free noise removal procedure as introduced in [18] has been im-
plemented.

3. A normalization of the correlation function of the velocities by the corre-
lation function of the sampling function, as it is inherently used with the
slot correlation and as it has adapted to the direct estimation [4, 16], has
been adapted also to the interpolation method as a means of correction of
the influence of dead times of the measurement system.

4. Bessel’s correction of the correlation estimate is added, which suppresses
systematic deviations due the under-estimation of the velocity variance
for short data sets, if the mean is estimated and removed from the data
sets following [16].

Since these little modifications influence the entire estimation procedure, it is
summarized here including the modifications and extensions.

3.1 Data pre-processing

The available data may be subdivided into blocks of a certain time duration
TB or the data may be obtained in blocks of a given record length. Due to the
combination of Bessel’s correction and the temporal limitation of the correla-
tion function, both given below, the block duration can be chosen very flexible
(compare [16]). It should be larger than the expected correlation interval of the
flow and can be as large as the full data set. Since for the interpolation method,
the computational costs increase with the square of the block length, too large
a block duration will be computational costly.

The assumed data set ui = u(ti) of the block duration TB is interpolated
using the sample-and-hold interpolation and re-sampled equidistantly with the
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frequency F = 1/∆τ, which defines the fundamental frequency of all derived
statistical functions hereof.

To avoid the wrap-around error of the derived statistical functions, the in-
terpolation is done for the duration of 2TB, where only the duration 1TB gets
measured data, where the above mentioned weighting factor is set to one. For
the other duration of 1TB the above weighting factor is set to zero to identify the
interpolated and re-sampled data as invalid or unknown. This is the pendent
to zero padding of equidistantly sampled data for the case of randomly sampled
data. An important detail to avoid systematic deviations is to interpolate the
valid data for exactly the duration of 1TB. For this purpose, the arrival time
of the first data point t0 is translated to TB + t0 and the value uN−1 of the
last sample in the data record is hold between the occurence at tN−1 until this
points in time. This yields an interpolated data set of exactly the time duration
of 1TB.

Formally, the interpolation looks like

u′i = u′(ti) = u′(i∆τ) = uk

{
∀i : tk ≤ i∆τ < tk+1 for k = 0 . . . N − 2
∀i : tN−1 ≤ i∆τ < TB + t0 for k = N − 1

with ∆τ = 1/F . Outside the interval t0 ≤ i∆τ < TB + t0, all values are zero.
With experimentally obtained data, gaps in the data stream have been iden-
tified, which significantly affect the derived statistical functions. Therefore,
interpolated weighting factors are defined similar to the interpolated velocities
as

w′i = w′(ti) = w′(i∆τ) = wk

{
∀i : tk ≤ i∆τ < tk+1 for k = 0 . . . N − 2
∀i : tN−1 ≤ i∆τ < TB + t0 for k = N − 1

For the interpolation method, the weights wk are usually set to one. However,
these weights can be used to suppress the gaps in the data stream by setting the
weights to zero, if the inter-arrival time between two samples exceeds a certain
limit. Good experience has been obtained with a maximum value of five times
the mean inter-arrival time. Due to this one looses about 0.7 % of useful data,
while the outliers of large inter-arrival times are suppressed effectively. The
weights then read

wk =


{

1 for tk+1 − tk < 5n
0 otherwise

}
for k = 0 . . . N − 2{

1 for TB + t0 − tN−1 < 5n
0 otherwise

}
for k = N − 1

with the mean data rates

n =
tN−1 − t0
N − 1

Other individual weighting, e.g. transit-time weighting, has not been real-
ized for the interpolation method yet. Since the interpolation holds the values
between samples, inherently a kind of an inter-arrival time weighting is real-
ized. The introduction of another weighting scheme then would over-weight the
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samples. However, the weights introduced here, for the interpolation method,
cannot be used as freely as for the other processing methods, while the use of
the weighting values to suppress parts of the data stream is possible.

From the interpolated and equidistantly re-sampled data series u′i, i = 0 . . .
[2TBF ] − 1 and the appropriate interpolated weigths w′i one can calculate the
block mean value as

ū =

[2TBF ]−1∑
i=0

w′iu
′
i

[2TBF ]−1∑
i=0

w′i

and remove the mean from the interpolated data to generate a mean free data
block for the following calculations of the correlation function and the appro-
priate power spectral density.

3.2 Estimation of the initial correlation functions

From the interpolated data one can obtain the correlation functions of the
weighted velocity and that of the weights either directly as

R′u(τk) =
1

TBF

[2TBF ]−1∑
i=0

[2TBF ]−1∑
j=0

w′iu
′
iw
′
ju
′
j

R′w(τk) =
1

TBF

[2TBF ]−1∑
i=0

[2TBF ]−1∑
j=0

w′iw
′
j

or, with less computational costs, via the spectrum using the discrete Fouier
transform (DFT)

U ′(fj) = DFT {w′iu′i} =

[2TBF ]−1∑
i=0

w′iu
′
ie
−2πifji∆τ

W ′(fj) = DFT {w′i} =

[2TBF ]−1∑
i=0

w′ie
−2πifji∆τ

with the imaginary unit i yielding the complex Fourier tranforms U ′(fj) and
W ′(fj), fj = j/2TB, j = 0 . . . [2TBF ]− 1. The energy spectra of the interpolated
signals then is

E′u(fj) =
1

F 2
U ′∗(fj)U

′(fj)

E′w(fj) =
1

F 2
W ′∗(fj)W

′(fj)
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with the conjugate complex ∗ and the correlation functions of the interpolated
signals can be derived using the inverse DFT (IDFT)

R′u(τk) =
F

TB
IDFT {E′u(fj)} =

1

2T 2
B

[2TBF ]−1∑
j=0

E′u(fj)e
2πiτkfj

R′w(τk) =
F

TB
IDFT {E′w(fj)} =

1

2T 2
B

[2TBF ]−1∑
j=0

E′w(fj)e
2πiτkfj

At this point the cross-correlation functions are 2TB long. The maximum
time lag of the correlation function is typically chosen much smaller than the
duration of the measurement. This reduces the estimation variance of the final
spectral estimate [14, 16]. With a given temporal resolution of the correlation
function of ∆τ the length of the correlation functions can be reduced by choosing
a number of samples K with K∆τ < 2TB. By rearranging the values obtained
by the IDFT, the correlation function can be estimated for τk = k∆τ, k =
−bK/2c . . . b(K−1)/2c.

At the same time the low-pass filter of the interpolation can be corrected
following the procedure given in [20].

R′′u(τk) =

{
R′u(0) for τk = 0
(1 + 2c)R′u(τk)− cR′u(τk+1)− cR′u(τk−1) otherwise

R′′w(τk) =

{
R′w(0) for τk = 0
(1 + 2c)R′w(τk)− cR′w(τk+1)− cR′w(τk−1) otherwise

with the constant

c =
e−n∆τ

(1− e−n∆τ )2

and with the mean data rate n.

3.3 Normalization, noise removal, Bessel’s correction and
final transformation

The final estimate of the correlation function (reduced to the total length of TC)
is obtained by normalization

R(τk) =


R′′u(τk)
R′′w(τk) − σ

2
n + σ2

ū for τk = 0

R′′u(τk)
R′′w(τk) + σ2

ū otherwise

including Bessel’s correction and noise removal, where σ2
ū is the estimated vari-

ance of the mean estimator above and σ2
n is the estimated variance of the noise.

In the case of the interpolation method σ2
ū is obtained similar to the procedure

given in [16] for the direct spectral estimator and for the slotting technique
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adpated to the interpolation method as

σ2
ū =

b(K−1)/2c∑
k=−bK/2c

R′′u(τk)

TBF −
b(K−1)/2c∑
k=−bK/2c

R′′w(τk)

Data noise contributes to the estimated correlation function at zero time lag
only as an added value, whereas for all other time lags noise contributes as an
increased estimation variance only, while no systematic deviation can be found
there. The spectrum instaed shows a constant offset for all frequencies. The
idea of the noise removal in [20] was to model the correlation function towards
time lag zero and replace the estimated (and noise affected) value R(0) by the
value obtained by the correlation model. Such a procedure always relays on the
validity of the model applied. A model-independent, and therefore more objec-
tive method to suppress the influence of the data noise can be found with the
slotting technique as well as with the direct spectral estimation, where, in both
cases, all self-products are removed from the respective sums of velocity prod-
ucts. Doing so, at time lag zero, only cross-products of velocity samples with
independent noise values and short inter-arrival times contribute to the value of
R(0), while the noise-affected self-products are not counted. For the interpola-
tion method, a similar method is aspired, where for each re-sampling interval the
cross- and self-products of all original samples are counted. Unfortunately, af-
ter the interpolation and re-sampling process, only the last samples within each
re-sampling interval are available, which makes it necessary to re-process the
original, irregularly sampled data. Therefore, three additional re-sampled data
series are derived, namely s′0,i = s′0(ti) = s′0(i∆τ), counting the number of origi-
nal, irregular samples within each interval ti−1 ≤ t < ti, s

′
1,i = s′1(ti) = s′1(i∆τ)

giving the sum of all velocities within this interval and s′2,i = s′2(ti) = s′2(i∆τ)
giving the sum of all velocity squared within this interval. All velocity values
are meant with the mean velocity removed, therefore, these “interpolated” and
re-sampled series can be obtained in a second step only, after the mean value
has been derived as given above.

The velocity variance estimated including the self-products then reads

s2
u =

[2TBF ]−1∑
i=0

s′21,i

[2TBF ]−1∑
i=0

s′20,i

and the variance estimated without the self-products then reads

s2
u =

[2TBF ]−1∑
i=0

s′21,i −
[2TBF ]−1∑

i=0

s′22,i

[2TBF ]−1∑
i=0

s′20,i −
[2TBF ]−1∑

i=0

s′0,i
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Since both values are biased due to the correlation between the instantaneous
data rate and the velocity (statistical bias), the correlation value at time lag
zero is not simply replaced by the variance estimate without the self-products.
Instead the difference between the two estimates, with and without the self-
products, is taken as an estimate of the noise variance

σ2
n =

[2TBF ]−1∑
i=0

s′21,i

[2TBF ]−1∑
i=0

s′20,i

−

[2TBF ]−1∑
i=0

s′21,i −
[2TBF ]−1∑

i=0

s′22,i

[2TBF ]−1∑
i=0

s′20,i −
[2TBF ]−1∑

i=0

s′0,i

and finally subtracted from the correlation value R(0).
The final correlation estimate is then transformed by means of the discrete

Fourier transform (DFT) to a power spectral density

S(fj) = ∆τ ·DFT {R(τk)} = ∆τ

b(K−1)/2c∑
k=−bK/2c

R(τk)e−2πifjτk

with fj = j∆f, j = −bK/2c . . . b(K−1)/2c giving a frequency resolution of ∆f =
1/K∆τ.

3.4 Remarks

Local normalization and fuzzy slotting [27, 28, 19, 26, 17] have not yet been
adapted to the interpolation method. The noise removal procedure suppresses
the influence of noise components in the data on the derived statistical functions.
The statistical bias is suppressed due to the inherent weighting of the sample-
and-hold interpolation, which holds values longer if the local data rate decreases.
An example program can be found at [1].
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