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Abstract

The direct estimation for calculating the autocorrelation function and
the spectrum from laser Doppler data is revisited and extended by recently
developed processing steps.

1 Introduction

For calculating the correlation function or the power spectral density from ran-
domly sampled data from laser Doppler velocity measurements, estimation pro-
cedures, which consider the specific characteristics of LDV data are required,
namely the sampling of the flow velocity at random arrival times, the data noise
and the correlation of the sampling rate and the instantaneous velocity. Much
effort has been put onto autocorrelation and autospectral estimators following
three different estimator classes, slot correlation, estimating a correlation func-
tion (correlogram) from the data [3, 26, 27, 9, 10, 13, 14, 18, 20, 21, 22, 23, 25],
direct spectral estimators, estimating a spectrum (periodogram) directly from
the randomly sampled data [3, 4, 5, 6, 7, 8, 15, 16, 28] and interpolation methods
of the randomly sampled LDV data set yielding a continuous velocity over time,
which then is re-sampled equidistantly with a given sampling frequency and
processed by usual signal processing tools for equidistantly sampled data, in-
cluding corrections of systematic errors [2, 11, 19, 24] and noise removal [17, 19].
A fourth processing method, using quantitized arrival times, has not achieved
much attention so far. It has been used before, in [12], however, it is broadly
available only after publication of [4], where it has been used to accelerate the
direct estimation of auto-spectra in combination with a normalization of the
appropriate correlation function.
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2 The data set

In the following processing steps a sets of irregularly sampled velocity data ui =
u(ti) at sampling times ti, i = 0 . . . N − 1 is assumed together with individual
weights wi according to the velocity smaples ui, e.g. the particle’s transit times.
If individual weights are not available, the inter-arrival times can be used for
weighting, where both, the forward and the backward inter-arrival times are
necessary for the correlation and spectral estimations.

wbw,i = ti − ti−1

wfw,i = ti+1 − ti

To avoid that gaps in the data stream of experimental data lead to improperly
large weights, as has been observed in experiments, all inter-arrival time weights
derived from inter-arrival times larger than five times the mean inter-arrival time
are set to zero. Due to this one looses only about 0.7 % of useful data, while
the outliers of large inter-arrival times are suppressed effectively.

3 Direct Spectral Estimator

The direct spectral estimation as given in [15] is reviewed including individual
data weighting (e.g. transit-time weighting) or forward-backward inter-arrival-
time weighting as an alternative, if reliable estimates of the particle transit
times are not available and several corrections to the algorithm from [28]. Local
normalization [27, 25] and fuzzy slotting [18] are adapted to the direct spectral
estimation method and introduced as optional extensions of the base algorithm.
The Python code of the estimator is available at [1].

3.1 Base Algorithm

A corrected direct spectral estimator with individual data weights or foward-
backward interarrival-time weighting, correction of influences of the random
sampling and processor dead times and Bessel’s correction is given in [15]. The
procedure consists of the following steps:

1. calculation of the primary spectra

Su(f) =
TB [UFB(f) + U∗FB(f)]

WFB(0) +W ∗FB(0)
(1)

and

Sw(f) =
TB [WFB(f) +W ∗FB(f)]

WFB(0) +W ∗FB(0)
(2)
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(Note, that the denominators of these equations have been modified com-
pared to [15].) with

UFB(f) =

N−2∑
i=0

N−1∑
j=i+1

wbw,iwfw,juiuje
−2πif(tj−ti) (3a)

=

N−1∑
j=1

wfw,juje
−2πiftj

(
j−1∑
i=0

wbw,iuie
−2πifti

)∗
(3b)

and

WFB(f) =

N−2∑
i=0

N−1∑
j=i+1

wbw,iwfw,je
−2πif(tj−ti) (4a)

=

N−1∑
j=1

wfw,je
−2πiftj

(
j−1∑
i=0

wbw,ie
−2πifti

)∗
(4b)

where TB is the total time of the data set or that of the data block and the
asterix means the conjugate complex. Note, that the second sum is part
of the addends of the first, outer sum. Note further, that the sums are
not independent of each other, which means that the Fourier transform is
not complete and direct calculations of the sums are necessary. Luckily,
the sums can be calculated parallel, such that only the individual samples
must be processed instead of all pairs of samples.

2. transformation into correlation functions and limiting the correlation func-
tion (alternative to block averaging)

Ru(τk) = F · IDFT {Su(fj)} =
1

J∆τ

b(J−1)/2c∑
j=−bJ/2c

Su(fj)e
2πifjτk (5)

and

Rw(τk) = F · IDFT {Sw(fj)} =
1

J∆τ

b(J−1)/2c∑
j=−bJ/2c

Sw(fj)e
2πifjτk (6)

by means of the inverse discrete Fourier transform IDFT with the fun-
damental frequency F , which defines the temporal resolution ∆τ = 1/F
of the obtained correlation functions. The primary spectra are calcu-
lated for J different frequencies fj = j∆f, j = −bJ/2c . . . b(J−1)/2c with
J = [2TBF ] and ∆f = F/J = 1/2TB. The correlation function is calculated
for K different time lags, where K is chosen significantly smaller than J
according to the considered correlation interval [−TC/2 : TC/2), TC = K/F ,
for τk = k∆τ, k = −bK/2c . . . b(K−1)/2c,
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3. normalization (correction of dead time influences) and Bessel’s correction

R(τk) =
Ru(τk)

Rw(τk)
+ σ2

ū, (7)

for τk = k∆τ, k = −bK/2c . . . b(K−1)/2c with σ2
ū an estimate of the variance

of the mean estimation. An appropriate estimator follows.

4. back-transformation into the final spectrum by means of the discrete
Fourier transform DFT

S(fj) = ∆τ ·DFT {R(τk)} = ∆τ

b(K−1)/2c∑
k=−bK/2c

R(τk)e−2πifjτk (8)

with the (reduced) spectral resolution ∆f = F/K = 1/TC for fj = j∆f, j =
−bK/2c . . . b(K−1)/2c

3.2 Local Normalization

A further reduction of random errors can be achieved with the local normaliza-
tion [26, 27, 25]. The main idea of this correction is to normalize the correlation
estimate at every time lag by a variance estimate, which corresponds to exactly
the data samples used for the correlation estimate. The result is a correlation
coefficient ρ in the range [−1 : 1]. The method has been developed originally
for the slotting technique. However, it can be adapted also to the direct spec-
tral estimator as one step of the various corrections acting on the correlation
function. The new estimate of the correlation coefficient then becomes

ρ(τk) =
Ru(τk) + σ2

ūRw(τk)√
[Ru1

(τk) + σ2
ūRw(τk)] [Ru2

(τk) + σ2
ūRw(τk)]

, (9)

with fj = j∆f, j = −bJ/2c . . . b(J−1)/2c and τk = k∆τ, k = −bK/2c . . . b(K−1)/2c
(The inverse discrete Fourier transform originally yields τk = k∆τ, k = −bJ/2c . . . b(J−1)/2c
where only the range k = −bK/2c . . . b(K−1)/2c is processed further.) with
Ru(τk) and Rw(τk) as above and

Ru1(τk) = F · IDFT {Su1(fj)} =
1

J∆τ

b(J−1)/2c∑
j=−bJ/2c

Su1(fj)e
2πifjτk (10)

and

Ru2
(τk) = F · IDFT {Su2

(fj)} =
1

J∆τ

b(J−1)/2c∑
j=−bJ/2c

Su2
(fj)e

2πifjτk (11)

with

Su1(f) =
TB

[
UFB,1(f) + U∗FB,2(f)

]
WFB(0) +W ∗FB(0)

(12)
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and

Su2(f) =
TB

[
UFB,2(f) + U∗FB,1(f)

]
WFB(0) +W ∗FB(0)

(13)

(Note, that the denominators of these equations have been modified compared
to [15].) with

UFB,1(f) =

N−2∑
i=0

N−1∑
j=i+1

wbw,iwfw,ju
2
i e
−2πif(tj−ti) (14a)

=

N−1∑
j=1

wfw,je
−2πiftj

(
j−1∑
i=0

wbw,iu
2
i e
−2πifti

)∗
(14b)

and

UFB,2(f) =

N−2∑
i=0

N−1∑
j=i+1

wbw,iwfw,ju
2
je
−2πif(tj−ti) (15a)

=

N−1∑
j=1

wfw,ju
2
je
−2πiftj

(
j−1∑
i=0

wbw,ie
−2πifti

)∗
(15b)

Note that J must be chosen odd to ensure that Ru1(τk) and Ru2(τk) are
real. This is required only for the case of local normalization applied.

To obtain a correlation function R(τk) and finally a power spectral den-
sity, the correlation coefficient function ρ(τk) is expanded by an estimate of the
velocities variance σ2

u yielding

R(τk) = σ2
uρ(τk) (16)

The velocity variance is estimated as

σ2
u =

N−1∑
i=0

wiu
2
i

N−1∑
i=0

wi

+ σ2
ū. (17)

The weights wi are as before for the mean estimate and σ2
ū again is the estimate

of the variance of the mean estimator. Note that in the variance estimate the
data are assumed to be mean-free in both cases (naturally or by estimating and
removing the mean from the data), therefore ui is given in both cases instead
of ui − ū.

The final spectral estimate is again obtained from the correlation by a dis-
crete Fourier transform (DFT) as given above.
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Figure 1: Dirac sampling vs. fuzzy time quantization for the direct spectral
estimation

3.3 Fuzzy Time Quantization

The adaptation of the fuzzy slotting [26, 18] to the direct estimator is not that
straight forward, because the sums UFB(f), WFB(f), UFB,1(f) and UFB,2(f)
above allow access to the inter-arrival times only within the double sum. Sep-
arated into two sums, access is given to arrival times only. To obtain still the
same weighting of cross-products depending on their inter-arrival time as it is
with the window function bk(∆t) for the slotting technique, all Dirac pulses of
the data sequence uiδ(t − ti) are replaced by finite pulses of the duration ∆τ
(symmetric around the original arrival time) and constant amplitude of ui/∆τ
(Fig. 1). The correlation of these finite pulses then has the triangular shape as
the fuzzy slot window functions. If these are sampled at integer numbers of ∆τ ,
the contribution of each data sample to the neighboring time lags corresponds
to the values of the slotting window function at the inter-arrival time between
the original pulses. Overlapping pulses superimpose linearly. The sums UFB(f)
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and WFB(f) then become

UFB(f) =

N−1∑
j=1

wfw,juj

 1

∆τ

tj+∆τ∫
tj−∆τ

e−2πift dt


j−1∑
i=0

wbw,iui

 1

∆τ

ti+∆τ∫
ti−∆τ

e−2πift dt

∗

(18a)

=



N−1∑
j=1

wfw,juj

[
i

2πf∆τ

(
e−2πif(tj+ ∆τ

2 ) − e−2πif(tj−∆τ
2 )
)]

×
{
j−1∑
i=0

wbw,iui

[
i

2πf∆τ

(
e−2πif(ti+ ∆τ

2 ) − e−2πif(ti−∆τ
2 )
)]}∗

for f 6= 0

N−1∑
j=1

wfw,juj

(
j−1∑
i=0

wbw,iui

)∗
for f = 0

(18b)

=


− (e−πif∆τ−eπif∆τ)

2

4π2f2(∆τ)2

N−1∑
j=1

wfw,juje
−2πiftj

[
j−1∑
i=0

wbw,iuie
−2πifti

]∗
for f 6= 0

N−1∑
j=1

wfw,juj

(
j−1∑
i=0

wbw,iui

)∗
for f = 0

(18c)

and

WFB(f) =

N−1∑
j=1

wfw,j

 1

∆τ

tj+∆τ∫
tj−∆τ

e−2πift dt


j−1∑
i=0

wbw,i

 1

∆τ

ti+∆τ∫
ti−∆τ

e−2πift dt

∗

(19a)

=



N−1∑
j=1

wfw,j

[
i

2πf∆τ

(
e−2πif(tj+ ∆τ

2 ) − e−2πif(tj−∆τ
2 )
)]

×
{
j−1∑
i=0

wbw,i

[
i

2πf∆τ

(
e−2πif(ti+ ∆τ

2 ) − e−2πif(ti−∆τ
2 )
)]}∗

for f 6= 0

N−1∑
j=1

wfw,j

(
j−1∑
i=0

wbw,i

)∗
for f = 0

(19b)

=


− (e−πif∆τ−eπif∆τ)

2

4π2f2(∆τ)2

N−1∑
j=1

wfw,je
−2πiftj

[
j−1∑
i=0

wbw,ie
−2πifti

]∗
for f 6= 0

N−1∑
j=1

wfw,j

(
j−1∑
i=0

wbw,i

)∗
for f = 0

(19c)
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If local normalization is used, UFB,1(f) and UFB,2(f) change accordingly to

UFB,1(f) =

N−1∑
j=1

wfw,j

 1

∆τ

tj+∆τ∫
tj−∆τ

e−2πift dt


j−1∑
i=0

wbw,iu
2
i

 1

∆τ

ti+∆τ∫
ti−∆τ

e−2πift dt

∗

(20a)

=



N−1∑
j=1

wfw,j

[
i

2πf∆τ

(
e−2πif(tj+ ∆τ

2 ) − e−2πif(tj−∆τ
2 )
)]

×
{
j−1∑
i=0

wbw,iu
2
i

[
i

2πf∆τ

(
e−2πif(ti+ ∆τ

2 ) − e−2πif(ti−∆τ
2 )
)]}∗

for f 6= 0

N−1∑
j=1

wfw,j

(
j−1∑
i=0

wbw,iu
2
i

)∗
for f = 0

(20b)

=


− (e−πif∆τ−eπif∆τ)

2

4π2f2(∆τ)2

N−1∑
j=1

wfw,je
−2πiftj

[
j−1∑
i=0

wbw,iu
2
i e
−2πifti

]∗
for f 6= 0

N−1∑
j=1

wfw,j

(
j−1∑
i=0

wbw,iu
2
i

)∗
for f = 0

(20c)

and

UFB,2(f) =

N−1∑
j=1

wfw,ju
2
j

 1

∆τ

tj+∆τ∫
tj−∆τ

e−2πift dt


j−1∑
i=0

wbw,i

 1

∆τ

ti+∆τ∫
ti−∆τ

e−2πift dt

∗

(21a)

=



N−1∑
j=1

wfw,ju
2
j

[
i

2πf∆τ

(
e−2πif(tj+ ∆τ

2 ) − e−2πif(tj−∆τ
2 )
)]

×
{
j−1∑
i=0

wbw,i

[
i

2πf∆τ

(
e−2πif(ti+ ∆τ

2 ) − e−2πif(ti−∆τ
2 )
)]}∗

for f 6= 0

N−1∑
j=1

wfw,ju
2
j

(
j−1∑
i=0

wbw,i

)∗
for f = 0

(21b)

=


− (e−πif∆τ−eπif∆τ)

2

4π2f2(∆τ)2

N−1∑
j=1

wfw,ju
2
je
−2πiftj

[
j−1∑
i=0

wbw,ie
−2πifti

]∗
for f 6= 0

N−1∑
j=1

wfw,ju
2
j

(
j−1∑
i=0

wbw,i

)∗
for f = 0

(21c)

3.4 Estimation of the variance of the mean estimator

Following the derivations in [15] to obtain an estimate of the variance of the
mean estimator from the data set, the previous correlation estimates Ru(τk)
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and Rw(τk) can be re-used, yielding

σ2
ū =

1
TBF

b(K−1)/2c∑
k=−bK/2c

Ru(τk) + 1
W

N−1∑
i=0

wbw,iwfw,iu
2
i

1− 1
TBF

b(K−1)/2c∑
k=−bK/2c

Rw(τk)

(22)

with
W = WFB(0) +W ∗FB(0) (23)

Note, that this equation has been modified compared to [15].

3.5 Remarks

A statistical bias due to the correlation of the velocity and the instantaneous
data rate are suppressed due to the implementation of the weighting schemes.
Since the self-products have been removed from the sums, noise components in
the data will not cause systematic errors in the derived statistical functions. An
example program can be found at [1].
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